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Abstract
Sinusoidal functions are widely used in many areas, such as physics, engineering, and gene expression to describe correlated
data along with time. A sinusoidal model with correlated error is fitted using a modified two- stage least squares method by
modifying the weight matrix of the correlation coefficient based on residuals from the one- way ANOVA model proposed by
Pukdee, Polsen, and Baksh (2020). By using that modification, a conditional least squares model with the AR (1) error is
modified and proposed as an alternative method. A Monte Caro simulation study is made of an effect of error mis- specifications

and this finding might be beneficial for some applications.
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Introduction

To analyze data collected over time, a nonlinear function f(t,; @) with correlated errors €, is widely used,

y, =f(t;)+e; i=1...r, (D

r. . . . !
where Y, = (yl.,l,...,y,.’n) is a vector of response observations at a time vector t, = (ti,l""’ti,n) set as an

independent variable vector, @ is an unknown parameter vector for the i "dataset and each observed data for
subject i is measured for 7 replicates. By assuming repeated measures at each 71 time point, the correlated error

vector §; = (8}. e " is based on a stationary autoregressive process of order p, AR(p) (Asikgil and Erar,

in

2013),
& =0t P&, tPE Tt P8 J=1.,n, (2)

where let (pl,..., P, )' S [—1, 1] be the correlation coefficient vector and 517. be independent and identically
distributed (IID) errors with mean O and variance o>. In the case of p=1in (2), the AR (1) process of

5 0 o 2 .
the error vector has a vector of mean ) and the variance-covariance matrix & V: which

98



Naresuan University Journal: Science and Technology 2022; (30)1

! PP "
1 p n-2
V.=l p 1 P
_ ) _
_pn 1 pn pn 3 1 |
is the 7X7 known matrix and the inverse matrix Vlfl = R/R, by using a least squares transformation ( Seber

and Wild, 2003). Here, this is a weight matrix,

1-p> 0 0 0 o0
-p 1 0 0 0

R=| o -p 1 0 ol (3)
0 0 0 —p

and it can yield the IID normal error Vectoré‘i =Re ~N (0,021 " )

The transformation methods applied to fit nonlinear regression models, with correlated errors assumed to be
AR (1) errors, are conditional least squares (CLS) estimation (Bates and Watts, 1988) and a two-stage least
squares (TSLS) method (Seber and Wild, 2008). Pukdee, Polsen, and Baksh (2018) presented the TSLS and
CLS methods for estimating the period parameters of sinusoidal models whether fitted models are correctly
specified or not correctly specified with the weight AR (1) matrix. They found that the TSLS method produces
more underestimated standard errors than the standard deviation for the period parameter estimates. To overcome
that problem, Pukdee, Polsen, and Baksh (2020) modify the two- stage least squares ( MTSLS) method by
using residuals from the one- way ANOVA model and calculating the correlation coefficient into the weight
matrix. They reported that the standard error for the period parameter of sinusoidal models was more accurate.

Consequently, the objective of this article is to apply the correlation coefficient based on the one- way
ANOVA model for modifying the CLS model. The modified CLS (MCLS) method is an alternative approach
and is used to estimate all parameters of a sinusoidal model where correlated errors are both correctly and
incorrectly specified. In addition, this study presents when the true value of the correlation coefficient is known
and is used in the TSLS method called TrueTSLS. Sinusoidal regression models which display cyclical patterns
are widely used to analyze data in many areas; for example, an engineering study presented by Liang, Ren, Sun,
and Zhu (2018) transformed the three parameters of a sinusoidal curve model into a one-dimension search for
a frequency parameter. In gene expression research, Izumo, Johnson, and Yamazaki ( 2003) studied the
relationship between circadian rhythms and the temperature fitted by a sine wave. In the literature, sinusoidal
regression models play the main rule in the frequency or period parameter of correlated data over time. This can
be used to predict the time interval for the process to repeat itself for experimental units after treatment, such as
body’s response to the effects of drugs. Sinusoidal models are fitted by the methods and then are compared based

on simulations.
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Methodology

Sinusoidal Regression Functions

Sinusoidal regression functions displaying cyclic patterns are used to analysis data. To describe that pattern,
the components of simple oscillations consist of amplitude, period, and phase. The amplitude is the expected
maximum value from the response. The period explains the time needed for the response process to repeat itself.
The phase is the time point at the beginning of the cycle. For example, responses of circadian gene expression
are measurements of light intensity over time. Therefore, to analyze the responses, Pukdee, Polsen, and Baksh
(2018) used the sinusoidal function modified from Kyriacou and Hall (1980) by adding a linear trend as,

27t

S(t,;:0) =a+ Bt; +(a, +aexp(=dt;))sin( L+ ), (4)
i i .

where the vector of unknown parameters is 0= (0( , ,3, adg, d,t, (D)’ , o and f are an intercept and a slope
of the regression line, respectively, d is the amplitude adjustment that can be increased or decreased by using
a(exp—dt), in which @ is the amplitude, disa damping parameter, T is the period, and D is the phase of
the sine curve.

Two-stage Least Squares Method with True ,O*

If the model (1) with the AR (1) error is transformed under the IID error process, &, ~ (0, 0'211_) , this can
build a new model, presented by Seber and Wild (2003) as,

z,=gt;0)+6; i=1...,r, (5)

where Z, =RY, ,g(t;0)=Rf(t;0),6 =RE,. Let 2, =(2,,,...,2,,) ,g(t;;0) = (g(¢,:0).....g(t,;0))
and §, = (5,‘1,...,5,,’”)' , so the transformed model (5) can be rewritten as,

z; =g(t;;0)+9;

K i=L...,r,and j=1,...,n,

where

V4

1 1
277 2y2 . - 7=
NP e,0) =P S0 =l ®

ij
yij _pyi,j_l f(tij;e)_pf(ti,j—l;a) 5 j=2,...,}’l,

can be replaced by firstly assuming to know 0 in (6) with the true p* and fitted by secondly minimizing the

error sum of squares,

Stmersis@ = A= p ) (1, = f: OV + 2D (3, =Py = £, 0+ 01, :0)) (D

i=1 j=2

with respect to 0.
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Modified Two-stage Least Squares Method
To modify the previous TSLS method for a practical approach, when O is unknown, it can be estimated by
using residuals from the one-way ANOVA model (Montgomery, 2001),
Vi S H; T &
where £, is the mean response from the j " time group and &, is the IID error and the residual is

& =y — /., in which [l is the sample mean. Next, to estimate for the i ™ experimental unit, the lag-1
ij ij J J p p g

autoregressive estimation is simply given by Abraham and Ledolter (1983) as,

To modify the model (6), /3 = mean( /31 ey ﬁr) is the mean of /3, for 7 replicates; this modification can be

used to build the modified two-stage least squares (MTSLS) model as,

1 1
YN T3 . e
Zi,j T (1 p )zyi,j and g(tl’j;e) — (1 p )Zf(ti’j,a) 5 j _1 (8)
Yij = P ft,:0)-pf(t,,:0) 5 j=2...n,

and its error sum of squares is,

~
=

) 2 A A 2
Swirsis 0) = (1= p*) (7, = £ 1,:0)) + 2D (v, = Pw,ys = S 1,:0)+ P11, :0)) (9

i=l j=2

and ordinary least squares (OLS) estimation can be used for estimating @ .

Modified Conditional Least Squares Method

Similarly, if the model (8) can be reduced by omitting the first pair (Z i1 a(t i 0)) based on the first order
autoregressive process, the modified conditional least squares (MCLS) model can be shown by,

Zy =Yy _lbyi,j—l and g(tij;a):f(ty;a)_ﬁf(ti,j—l;a) s J=2,..,n,

and the error sum of squares function of the MCLS model,

Sucrs@ =33 (3, = v, — 130+ 1, O (10)

i=1 j=2
To be the same as the previous method, the function (10) is minimized with respect tof . The estimators @ are

asymptotic properties to OLS estimators (Gallant and Goebel, 1976; Bender and Heinemann, 1995).

Monte Carlo Simulation

In the Monte Carlo simulation study to compare the performance of the above methods, each simulated
dataset Vi for four replicates i = 1,....4 is generated under the sinusoidal function (4) with known parameters

as given by,
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27t
Y, =330-3¢, + (0.5+180 exp(—0.07t,.j ))sin (T‘r” +0.3 IJ +&;, (11D)

where let l‘i/ =0,15,...,78, n= 53 with the following error structures,

1D, & =0.; j=L...,n,

v =9,

AR (D, 6, =95 005, j:i n

AR @821 5 L005s  101e ]j=13’2 n
. aH0de s j=3 0,

where independent errors are normally distributed 51.1. ~N (O, 5) . Each sample size with a total of Monte Carlo
runs M = 20000 and parameter estimates @ of those methods are based on the Gauss-Newton iterative
algorithm using the R software (Ritz and Streibig, 2008; Crawley, 2013) with setting the known parameters
@ in (11) as initial values. They are assessed and compared first based on the percentage bias of the estimator

of the parameter as follows,

%Bias=1oo(‘9;f9 J

20000
where 8 = m Z 6, is the mean of the parameter estimate, ém , which is obtained from the m" simulation
m=1

run (m=1,2...,20000). Secondly, the efficiency of the method is measured using the root mean square error as

estimated by,

RMSE = \/(SD(é))z +(6-0).

4 20000 .
where the standard deviation is SD(@) = JullY. z (@, —6)° . Thirdly, the standard error for parameter
200001 7=
estimates is,
1 20000

SE()= ——
@)= 20000

> SE@,),

m=1
where SE(ém) is estimated from the m" simulated times. Finally, to assess the statistical inference validity, the
empirical coverage probability is the proportion of times that the nominal 95% confidence interval covers the
parameters g, as given by,

P(6, ~t0025,SE(0,) < 0" <6, +1,055,SE(B,)) = 0.95

where let s, be the upper 0.025 quantile of ¢ distribution with degrees of freedom v =nr—p which is

dependent on each method.

Results

*
The simulation results are obtained from the two- stage least squares estimation with true © (TrueTSLS),
as a theoretical part, the modified conditional least squares ( MCLS) method and modified two- stage least

squares (MTSLS) method, as practical parts in fitting the sinusoidal regression model with correlated error based
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on the autoregressive process of order one, AR(1), and evaluated using the percentage bias (%Bias), root mean

squares error (RMSE), standard error (SE), and coverage probability for the parameter estimates.

Table 1 Percentage bias for parameter estimates

A

2] Errors %Bias
TrueTSLS MTSLS MCLS
1D -0.0018 -0.0017 -0.0007
o AR(1) -0.0066 -0.0065 -0.0052
AR(2) -0.0056 -0.0053 -0.0065
1D 0.0004 0.0011 -0.0007
IBA AR(1) -0.0032 -0.0038 -0.0019
AR(2) -0.0025 -0.0032 0.0018
11D) -1.1281 -0.8728 -0.4687
CAlS AR(1) -2.6312 -2.6377 -1.1718
AR(2) -3.9272 -3.8800 -1.5986
1D 0.0254 0.0266 0.0339
a AR(1) 0.0589 0.0553 0.0781
AR(2) 0.0685 0.0699 0.0934
1ID 0.0465 0.0493 0.0530
62 AR(1) 0.0592 0.0579 0.0868
AR(2) 0.0652 0.0703 0.0959
11D 0.0028 0.0027 0.0050
T AR(1) 0.0070 0.0078 0.0061
AR(2) -0.0036 -0.0037 -0.0032
11D 0.0423 0.0414 0.0005
(i) AR(1) 0.0351 0.0425 -0.0035
AR(2) 0.0785 0.0760 -0.0306

Table 1 shows the simulation results when the sinusoidal model with the correlated error AR (1) assumed

to be correct is fitted by these three methods. Although the % Bias values for the first three parameter estimates

a s ,é and a, are negative, for the last four estimates a, d , Tand ® are positive, and their performances are
quite good because they are close to zero. However, d_ are biased by approximately - 1.17% by MCLS and
-2.63% by TrueTSLS and MTSLS.

Although the correlated datasets generated by the models with IID and AR (2) errors are fitted for mis-
specifying error cases, almost all values of % Bias of all parameter estimates produced by these three methods
are close to zero. However, the % Bias values of d, are biased and around - 1.59% obtained from MCLS,

-3.88% from MTSLS, and -3.92% from TrueTSLS
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Table 2 Root mean squares error and standard error for parameter estimates

A

2 Errors RMSE SE
TrueTSLS MTSLS MCLS TrueTSLS MTSLS MCLS
11D 0.8489 0.8495 0.8889 0.8409 0.8444 0.8830
o AR(1) 1.0966 1.0981 1.1759 1.0974 1.0860 1.1673
AR(2) 1.2541 1.2548 1.3458 1.1009 1.1171 1.2046
11D 0.0175 0.0175 0.0181 0.0176 0.0176 0.0182
ﬁ AR(1) 0.0231 0.0231 0.0243 0.0229 0.0227 0.0239
AR(2) 0.0260 0.0261 0.0275 0.0230 0.0233 0.0246
11D 0.9037 0.9047 0.9094 0.8911 0.8942 0.8994
CAls AR(1) 1.1426 1.1436 1.1591 1.1359 1.1234 1.1333
AR(2) 1.2316 1.2325 1.2520 1.1390 1.1504 1.1601
11D 3.0080 3.0133 3.1477 3.0192 3.0238 3.1623
a AR(1) 3.7842 3.7871 3.9697 3.7893 3.7479 3.9396
AR(2) 4.1036 4.1065 4.3238 3.8001 3.8317 4.0214
1ID 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022
dA AR(1) 0.0027 0.0027 0.0028 0.0027 0.0027 0.0028
AR(2) 0.0029 0.0030 0.0959 0.0027 0.0028 0.0029
1ID 0.1099 0.1099 0.1360 0.1090 0.1092 0.1348
T AR(1) 0.1348 0.1348 0.1862 0.1339 0.1325 0.1827
AR(2) 0.1425 0.1426 0.2021 0.1342 0.1353 0.1888
1ID 0.0127 0.0128 0.0190 0.0127 0.0127 0.0191
qA) AR(1) 0.0145 0.0145 0.0278 0.0147 0.0146 0.0274
AR(2) 0.0145 0.0146 0.0298 0.0148 0.0148 0.0284

It can be seen in Table 2 that the values of RMSE produced using the TrueTSLS and MTSLS methods are
similar and more efficient than those of MCLS. Since the values of SE from the TureTSLS, MTSLS, and MCLS
methods are slightly underestimated compared to RMSE, they produce good coverage probabilities which are
slightly under 0.95, and of course the best one is for the TrueTSLS method, as depicted in Figure 1. However,
the SE values of & estimated using the TrueTSLS and MTSLS methods are overestimated and their coverage
probabilities are also more than 95%, as shown in Figure 1 (g).

For mis- specifying error cases, IID and AR (2) errors, the RMSE under TrueTSLS and MTSLS are still
similar and smaller than the one for MCLS. Because the SE values obtained from all methods are lower than the
SD, the coverage probabilities for all parameters are significantly under the nominal probability 0.95 for the AR
(2) error structure, as seen in Figure 1 (a)-(f). On the other hand, the coverage probabilities for @ obtained

from TrueTSLS and MTSLS are larger than 0.95, as shown in Figure 1 (g).
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Figure 1 Coverage probability for parameters: (a) intercept & , (b) slope [, (¢) amplitude adjustment a., (d) amplitude d ,
(e) damping d , (f) period T and (g) phase @

Example

In this section, the proposed methods are applied to synthetic circadian rhythms over time courses presented
by Yang and Su (2010) to estimate the period parameter in circadian models. The data were generated by the
sinusoidal model as shown in Figure 2. The synthesis time- series data were fitted by the cosine function as

given by,

27t
-0) — y _
f(ti]., 6) =500 exp(—0.01z,) + I00SNR exp(—0.017, ) cos - oD |,
where SNR is a signal-to-noise ratio parameter, @ is the phase and T is the period of the cosine wave. The
1
initial values are taken from sampling intervals of SNR € g ,1 |and D € (0, 27]. The period interval is

between 20 and 28 hours. MTSLS and MCLS procedures produce the nominal 95% confidence interval for the
circadian period 7 , 24.0342 + 0.4562 and 24.0354  0.4665. The residual standard errors & are 41.26 and

41.73, respectively.
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Figure 2 The example of synthetic datasets for four replicated generated under the following sinusoidal model
2nt,
», =500exp(—0.01¢) + 140 exp(-0.01¢, ) cos - +0, , where let [, = 0,4,...,96 with 4 hour intervals
24

and & is IID with mean £ = 0 and high standard deviation o = 40

Discussion

Almost all the bias results, obtained from the above three methods, TrueTSLS, MTSLS, and MCLS assuming
that the correlated error is a stationary AR(1) process when the fitted sinusoidal model with correlated errors
whether correctly specified or not, are asymptotically unbiased estimates. This has the advantage of least squares
estimation. The root mean squares errors, standard errors and coverage probabilities indicate that if we know the
true values of the correlation coefficients, the TrueTSLS method is the best choice. However, if we do not know
the correlation coefficients and the correlated errors are mis- specified, the MTSLS and MCLS methods are
comparable. In addition, the MCLS method is considerably less efficient because its degree of freedom is reduced
by the first order of the autoregressive process. It should be noted that they are much less efficient when the
autoregressive error process is high-order, which corresponded with Gallant and Goebel (1976). In the example,
the proposed methods can be applied to the synthetic dataset shown by Yang and Su (2010), and here they are

used to produce period estimates and the confidence interval.

Conclusion and Suggestions

In this paper, proposed methods for practical use to fit the sinusoidal model where the error is correlated,
based on the AR (1) process are the modified two- stage least squares ( MTSLS) method and modified
conditional least squares ( MCLS) estimation using pure errors to compute the correlation coefficient in the
weight matrix. This paper presents the two- stage least squares when it is theoretically assumed to know the

correlation coefficient of errors (TrueTSLS). The simulation results suggest that these methods tend to produce
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asymptotically unbiased estimators for parameters. The TrueTSLS method produces better confidence intervals
than the MTSLS and MCLS methods, but for mis- specification cases, the MTSLS and MCLS methods are
comparable with the TrueTSLS method. Therefore, this work suggests that the MTSLS and MCLS methods can
produce reliable estimates and confidence intervals and can be useful for analysis for any situations. Further work

will extend modified least squares methods to cover nonlinear regression models with AR(p) errors.
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