
วารสารวิทยาศาสตร์และเทคโนโลยี มทร.สุวรรณภูมิ Print ISSN: 2586-8101 Online ISSN: 2697-6447 
ปีท่ี 8 ฉบับท่ี 2 (พฤษภาคม 2567 – สิงหาคม 2567) 

  

 

46 

 CLOSED FORM EXACT SOLUTIONS TO THE COMBINED KDV-MKDV EQUATION 
AND THE (2+1)-DIMENSIONAL GBS EQUATION VIA  

THE RICCATI SUB-EQUATION METHOD 
 

Jiraporn Sanjun1*, Kanitha Promkwan1, Thanon Korkiatsakul1 Supinan Janma2 

 

1Department of Mathematics, Faculty of Science and Technology, Suratthani Rajabhat 
University, Thailand                              

2Faculty of Sciences and Agricultural Technology, Rajamangala University of Technology Lanna, 
Lampang, Thailand  

*Corresponding Author: jiraporn.san@sru.ac.th 
 

วันที่รับบทความ          2 มีนาคม 2567  วันแก้ไขบทความ     7 กันยายน 2567 วันตอบรับบทความ     12 กันยายน 2567 

 
ABSTRACT 

 The main goal of this study is to find exact traveling wave solutions of the combined kdv-
mkdv equation and the (2+1)-dimensional generalized breaking soliton equation using the Riccati 
sub-equation method. The solutions are shown by hyperbolic and trigonometric functions, which 
can be transformed into kink waves and periodic waves. Their graphical representations are two-
dimensional, three-dimensional graphs, and contour graphs are shown using suitable parameter 
values. Additionally, the results proved that the method employed in this study is a powerful 
analytical tool for obtaining exact traveling wave solutions to nonlinear models that are used in 
many different engineering and scientific disciplines. 
. 
 
Keywords: Riccati sub-equation method; partial differential equation; combined kdv-mkdv 
equation; (2+1)-dimensional generalized breaking soliton equation 
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1. INTRODUCTION 
 Nonlinear partial differential equations have become a useful tool for describing the 
natural phenomena of science and engineering such as optical fiber communications, atmospheric 
pollutant dispersion, solid-state physics, signal processing, mechanical engineering, electric control 
theory, relativity, chemical reactions, etc. Recently, researchers have found many powerful 
methods to get exact solutions to nonlinear partial differential equations, such as the simple 
equation method [1], the modified simple equation method [2], the Kudryashov method [3], the 
(G′/G)-expansion method [4], the sine-Gordon expansion method [5], the Riccati sub-equation 
method [6], the Riccati-Bernoulli sub-ODE method [7], the Laplace optimized decomposition 
method [8], the new extended direct algebraic method [9], etc. 
 In the present work, we take into consideration the combined kdv-mkdv equation [10], 

 2
t x x xxxu uu u u u 0, + + + =  

where ( )u u x, t , =  and   are real constants. Many analytical techniques have been used to 

study this equation. From numerous authors, such as in 2010 using the Jacobi elliptic functions 
expansion method [11], in 2012 using the improved (G′/G)-expansion method [12], in 2014 using 
the complex method [13], in 2016 using the consistent tanh expansion (CTE) method [14], and in 
2023 using the Bernoulli sub-ODE method [10]. And we investigate the (2+1)-dimensional 
generalized breaking soliton (GBS) equation [15], 

xt xx y x xy xxxyu 4u u 4u u u 0,+ + + =  

where ( )u u x, y, t=  In many papers, the (2+1)-dimensional GBS equation (1.2) was investigated 
with various techniques, such as in 2010 using the generalized Jacobi elliptic function method [15], 
in 2013 using the new generalized (G'/G)-expansion method [16], in 2015 using the modified simple 
equation method [17], in 2018 using the Bell’s polynomials method [18]. 

 In this work, we use the traveling wave to transform the combined kdv-mkdv 
equation and the (2+1)-dimensional generalized breaking soliton (GBS) equation into nonlinear 
ordinary differential equations. Then, using the Riccati sub-equation method, we have displayed 
the analytical solutions, and the wave effects are shown in 2D, 3D, and contour graphs. 
  
 

 

(1.1) 

(1.2) 
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2. DESCRIPTION OF THE RICCATI SUB-EQUATION METHOD 

 This section presents the Riccati sub-equation method, a simple technique for finding 
traveling wave solutions to nonlinear partial differential equations. Assume that the nonlinear 
partial differential equation with two independent variables x  and t  is represented by: 

t x tt xx xtP(u,u ,u ,u ,u ,u ...) 0,=  

where ( )u u x, t=  is an unknown function and P  is a polynomial in ( )u x, t and its various partial 
derivatives, in which highest-order derivatives and nonlinear terms are involved. The following five 
processes can be used in the Riccati sub-equation method [19,20]. 

First, transformation process.               
Denoting the traveling wave solution of PDE (2.1) as:  

( )u(x, t) u , x t,  = = −  

where   is the speed of the traveling wave. We are capable of transforming Eq. (2.1) into an 

ordinary differential equation (ODE) for ( )u u =  using the traveling wave transformation Eq. (2.2). 

This enables us to use the following changes:              

2
x t xt ttu u , u u , u u , u u , ...     = = − = − =  

then Eq. (2.1) reduces to a nonlinear ordinary differential equation ODE: 

( , , , ...) 0,G u u u  =  

where G  is a polynomial of ( )u   and its derivatives, where the prime represents the derivative 

with respect to .  

Second, solution-assuming process.                          
Assume the solution of Equation (2.3) in finite series, 

( ) ( )
N

i
i

i 0

u a ,  
=

=  

when ia  are constants and Na  is non-zero, while ( )   satisfies the following the Riccati 
equation:  

(2.1) 

(2.2) 

(2.3) 

(2.4) 
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Third, general solutions of the Riccati sub equation method.       
The Riccati equation method [19,20] is used to find ,  as shown below: 

( ) ( )2 ,     = +  

Where   is an arbitrary constant. Here, prime denotes the derivation with respect to .  By 
using the general solutions of Eq. (2.5), we obtain the following expression: 
Case I: When 0,   

( ) ( )1 tanh ,   = − − −pq  

( ) ( )2 coth ,   = − − −pq  

( ) ( ) ( )3 tanh 2 sech 2 ,     = − − −  − −pq pqi  

( ) ( ) ( )4 coth 2 csch 2 ,     = − − −  − −pq pq  

( )5

1
tanh coth ,

2 2 2

 
     

  −   − 
= − − + −    

    
pq pq  

( )
( ) ( )

( )

2 2

6

cosh 2
,

sinh 2

  
 



− + − − −
=

− +

pq

pq

R S R

R S
 

( )
( ) ( )

( )

2 2

7

sinh 2
,

cosh 2

  
 



− − − − −
= −

− +

pq

pq

S R R

R S
 

 

where R, S  are two non-zero real constants and satisfy 2 2S R 0.−   

Case II: When 0,   

( ) ( )8 tan ,   = pq  

( ) ( )9 cot ,   = − pq  

( ) ( ) ( )10 tan 2 sec 2 ,     = − pq pq  

( ) ( ) ( )11 cot 2 csc 2 ,     = − pq pq  

( )12

1
tan cot ,

2 2 2

 
     

    
= −    

    
pq pq  

( )
( ) ( )

( )

2 2

13

cos 2
,

sin 2

  
 



 − −
=

+

pq

pq

R S R

R S
 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 
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( )
( ) ( )

( )

2 2

14

sin 2
,

cos 2

  
 



 − −
= −

+

pq

pq

R S R

R S
 

where R,S  are two non-zero real constants and satisfy 2 2R S 0.−   
 
Case III: When 0 =  

( )15

1
, 


= − =

+
g const

g
 

 The different types of generalized hyperbolic functions are defined as follows 
[19,20], with p  and q  arbitrary constants, p 0,q 0,   

( )
−−

=sinh ,
2pq

pe qe 

  

( )
−+

=cosh ,
2pq

pe qe 

  

( )
−

−

−
=

+
tanh ,pq

pe qe

pe qe

 

 
  

( )
−

−

+
=

−
coth ,pq

pe qe

pe qe

 

 
  

( )
−

=
+

2
sech ,pq pe qe 

  

( )
−

=
−

2
csch ,pq pe qe 

  

where   is an independent variable. 
 The different types of generalized triangular functions are defined as follows 
[19,20], with p  and q  arbitrary constants, p 0,q 0,   

( )
−−

=sin ,
2

i i

pq

pe qe

i

 

  

( )
−+

=cos ,
2

i i

pq

pe qe 

  

( )
−

−

−
= −

+
tan ,

i i

pq i i

pe qe
i
pe qe

 

 
  

( )
−

−

+
=

−
cot ,

i i

pq i i

pe qe
i

pe qe

 

 
  

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 
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( )
−

=
+

2
sec ,pd i ipe qe 

  

( )
−

=
−

2
csc ,pq i i

i

pe qe 
  

where   is an independent variable. 
 
Fourth, the N  exploration process. 
The positive integer N  can be determined by balancing the highest-order derivative and the 
highest nonlinear terms in Eq. (2.3). 
 
Fifth, the solution-seeking process. 
Substituting Eqs. (2.4) and (2.5) into Eq. (2.3), the coefficients of all terms of the same order 

( )i i 0,1, 2, 3, ... =  are gathered, and the coefficients are set to zero. We get an overdetermined 

system of algebraic equations with respect to ( )ia i 0,1,2, ...,N= . When all the parameters in Eq. 
(2.4) are substituted, the solutions to Eq. (2.1) for the traveling wave are reached. 
 

3. DESCRIPTIONS OF THE RICCATI SUB-EQUATION METHOD 
 Next, we wish to apply the preceding Ricciti sub-equation method to solve both the 
combined kdv-mkdv equation and the (2+1)-dimensional GBS equation: 
 
3.1 Results of the combined kdv-mkdv equation the combined kdv-mkdv equation 
The combined kdv-mkdv equation is  

2
t x x xxxu uu u u u 0, + + + =  

where   and   are real constants. We will reduce it to an ODE using the traveling wave variable 
x t. = −  The substitution of the transformation into Eq. (3.1.1) leads to: 

2u uu u u u 0.     − + + + =  

Integration Eq. (3.1.2) with the zero constant, we get:  
2 3u u

u u 0.
2 3

 
 − + + + =  

Next, we utilized the balance approach of the highest-order derivative term and the highest 
nonlinear terms of Eq. (3.1.3). then were N equals 1. We have the solution to Eq. (3.1.3) as follows: 

(2.31) 

(2.32) 

(3.1.1) 

(3.1.2) 

(3.1.3) 
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( ) 0 1u a a , = +  

where   satisfies Eq. (2.5). Therefore, the expressions for 2u ,u  and 3u  are expressed as: 

3
1 1u 2 a 2a ,   = +  

2 2 2 2
0 0 1 1u a 2a a a , = + +  

3 3 2 2 2 3 3
0 0 1 0 1 1u a 3a a 3a a a .  = + + +  

Substituting Eqs. (3.1.4) and (3.1.5) into Eq. (3.1.3) and collecting the coefficients of i  where 

0,1,2,3,i =  yields  
2 3

0 0 0
0

1 2
1 0 1 0 1 1

2
2 21

0 1

3
3 1

1

a a
; a 0,

2 3
; a a a a a 2 a 0,

a
; a a 0,

2
a

; 2a 0.
3

 
 

    


 




− + + =

− + + + =

+ =

+ =

 

Solving these equations, we get  
2 2

0 1

6
, , ,

2 24 6
a a

  
 

   

−
= − =  − = =  

The following are the exact traveling wave solutions to the combined kdv-mkdv equation:           

Case I: when 0,                                 

 ( )
2 2

1 , 1 tanh ,
2 24 6

  

  

   
= −  − +        

pqu x t x t        

 ( )
2 2

2 , 1 coth ,
2 24 6

  

  

   
= −  − +        

pqu x t x t  

( )
2 2 2 2

3 , 1 tanh 2 sech 2 ,
2 24 6 24 6

    

    

       
= −  − +  − +                  

pq pqu x t x t i x t   

( )
2 2 2 2

4 , 1 coth 2 csch 2 ,
2 24 6 24 6

    

    

       
= −  − +  − +                  

pq pqu x t x t x t   

(3.1.4) 

(3.1.5) 

(3.1.6) 

(3.1.7) 

(3.1.8) 

(3.1.9) 

(3.1.10) 

(3.1.11) 
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( )
2 2 2 2

5

1 1 1
, 1 tanh coth ,

2 2 2 24 6 2 24 6

    

    

        
 = −  − + + − +                    

pq pqu x t x t x t  

( )

2 2
2 2

6 2 2

cosh 2
24 6

, 1 ,
2

sinh 2
24 6

 

 

  

 

    
 + − − +        = −       − + +         

pq

pq

R S R x t

u x t

R x t S

 

( )

2 2
2 2

7 2 2

sinh 2
24 6

, 1 ,
2

cosh 2
24 6

 

 

  

 

    
 − − − +        = −      − + +         

pq

pq

S R R x t

u x t

R x t S

 

where R,S  are two non-zero real constants and satisfy 2 2S R 0.−   

Case II: When 0,    

 ( )
2 2

8 , 1 tan ,
2 24 6

  

  

   
= −  +        

pqu x t i x t  

 ( )
2 2

9 , 1 cot ,
2 24 6

  

  

   
= −  +        

pqu x t i x t  

( )
2 2 2 2

10 , 1 tan 2 sec 2 ,
2 24 6 24 6

    

    

        
 = −  +  +                    

pq pqu x t i x t x t  

( )
2 2 2 2

11 , 1 cot 2 csc 2 ,
2 24 6 24 6

    

    

        
 = −  +  +                    

pq pqu x t i x t x t  

( )
2 2 2 2

12

1 1 1
, 1 tan cot ,

2 2 2 24 6 2 24 6

    

    

        
 = −  + − +                    

pq pqu x t i x t x t  

(3.1.12) 

(3.1.13) 

(3.1.14) 

(3.1.15) 

(3.1.16) 

(3.1.17) 

(3.1.18) 

(3.1.19) 
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( )

2 2
2 2

13 2 2

cos 2
24 6

, 1 ,
2

sin 2
24 6

 

 

  

 

    
  − − +        = −       + +         

pq

pq

R S R x t

u x t i

R x t S

 

( )

2 2
2 2

14 2 2

sin 2
24 6

, 1 ,
2

cos 2
24 6

 

 

  

 

    
  − − +        = −      + +         

pq

pq

R S R x t

u x t i

R x t S

 

where R,S  are two non-zero real constants and satisfy 2 2R S 0.−   
 

3.1 Results of the (2+1)-dimensional GBS equation 
The (2+1)-dimensional GBS equation is 

xt xx y x xy xxxyv 4v v 4v v v 0.+ + + =   

We will reduce it to an ODE using the traveling wave variable x y t. = + −  The substitution 
of the transformation into Eq. (3.2.1) leads to: 

(4 )v 8v v v 0.   − + + =  

Integration Eq. (3.2.2) with the zero constant, we get:  

( )
2

v 4 v v 0.   − + + =  
 

Next, we utilized the balance approach of the highest-order derivative term and the highest 
nonlinear terms of Eq. (3.2.3). then were N equals 1. We have the solution to Eq. (3.2.3) as follows: 

( ) 0 1u a a , = +  

where   satisfies Eq. (2.5). Therefore, the expressions for ( )
2

v , v   and v  are expressed as: 
2

1 1v a a ,  = +  

( )
2 2 2 2 2 2 4

1 1 1v a 2 a a ,    = + +  

2 2 4
1 1 1v 2 a 8 a 6a ,    = + +  

(3.1.20) 

(3.1.21) 

(3.2.1) 

(3.2.2) 

(3.2.3) 

(3.2.4) 

(3.2.5) 
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Substituting Eq. (3.2.5) into Eq. (3.2.2) and collecting the coefficients of  i  where 0,2,4=i  

yields  
0 2 2 2

1 1 1

2 2
1 1 1

4 2
1 1

; 2 a 4 a a 0,

; 8 a 8 a a 0,

; 6a 4a 0.

   

   



+ − =

+ − =

+ =

 

Solving these equations, we get 

1

3

2
= −a  and  

4




−
=  

The following are the exact traveling wave solutions to the 

Case I: when 0,   

 ( ) ( )1 0

3
, , tanh ,

4 2


 

 
= + + − 

 
pqv x y t a x y t  

 ( ) ( )2 0

3
, , coth ,

4 2


 

 
= + + − 

 
pqv x y t a x y t  

 ( ) ( )( ) ( )( )( )3 0

3
, , tanh sech ,

4


   = + + −  + −pq pqv x y t a x y t i x y t  

 ( ) ( )( ) ( )( )( )4 0

3
, , coth csch ,

4


   = + + −  + −pq pqv x y t a x y t x y t  

 ( ) ( ) ( )5 0

3
, , tanh coth ,

8 4 4

  
 

    
= + + − + + −    

    
pq pqv x y t a x y t x y t  

 ( )
( )( )

( )( )

2 2

6 0

cosh3
, , ,

4 sinh

 

 

 + − + −
 = −
 + − +
 

pq

pq

R S R x y t
v x y t a

R x y t S
 

 ( )
( )( )

( )( )

2 2

7 0

sinh3
, , ,

4 cosh

 

 

 − + + −
 = +
 + − +
 

pq

pq

S R R x y t
v x y t a

R x y t S
 

where R,S  are two non-zero real constants and satisfy 2 2S R 0.−   
 
Case II: When 0,   

 ( ) ( )8 0

3
, , tan ,

4 2


 

 − 
= − − + − 

 
pqv x y t a x y t  

(3.2.6) 

(3.2.7) 

(3.2.8) 

(3.2.9) 

(3.2.10) 

(3.2.11) 

(3.2.12) 

(3.2.13) 

(3.2.14) 

(3.2.15) 
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 ( ) ( )9 0

3
, , cot ,

4 2


 

 − 
= + − + − 

 
pqv x y t a x y t  

 ( ) ( )( ) ( )( )( )10 0

3
, , tan sec ,

4


   

−
= − − + −  − + −pq pqv x y t a x y t x y t  

 ( ) ( )( ) ( )( )( )11 0

3
, , cot csc ,

4


   

−
= + − + −  − + −pq pqv x y t a x y t x y t  

 ( ) ( ) ( )12 0

3
, , tan cot ,

8 4 4

  
 

 −  −   − 
= − + − − + −    

    
pq pqv x y t a x y t x y t  

 ( )
( )( )

( )( )

2 2

13 0

cos3
, , ,

4 sin

 

 

  − − − + −−
 = −
 − + − +
 

pq

pq

R S R x y t
v x y t a

R x y t S
 

 ( )
( )( )

( )( )

2 2

14 0

sin3
, , ,

4 cos

 

 

  − − − + −−
 = +
 − + − +
 

pq

pq

R S R x y t
v x y t a

R x y t B
 

where R, S  are two non-zero real constants and satisfy 2 2R S 0.−   

4. GRAPHICAL REPRESENTATION OF SOME OBTAINED SOLUTION 
 In this section, we have presented some physical graphs of some solutions to the combined 
kdv-mkdv equation and the GBS equation. 

4.1 Graphical representation of the combined kdv- mkdv equation 
 We set some parameters to get the example graph of the wave effects of the combined kdv- 
mkdv equation by 2, 2 = = −  in the interval 0 , 100 x t , which displayed in Figures 1 and  

2, it produces a kink wave solution. 
 
 
 
 
 
 

 

( )
2 2

1 , 1 tanh ,
2 24 6

  

  

   
= − + − +        

pqu x t x t  

Figure 1. The kink wave solution of 1 ( , )u x t  in 3D, 2D and contour 
 
 
 

(3.2.16) 

(3.2.17) 

(3.2.18) 

(3.2.19) 

(3.2.20) 

(3.2.21) 
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( )
2 2 2 2

4 , 1 coth 2 csch 2 ,
2 24 6 24 6

    

    

       
= −  − + − − +                  

pq pqu x t x t x t  

Figure 2. The kink wave solution of 4 ( , )u x t  in 3D, 2D and contour 

 

The graphs of 7 ( , )u x t  by 2, 2, 1, 2 = = − = =R S  in the interval 0 , 100,x t   as 

shown in Figures 3, are the shapes of kink waves that rise or descend from one asymptotic state 
to another. 
 
 
 
 
 

( )

2 2
2 2

7 2 2

sinh 2
24 6

, 1 ,
2

cosh 2
24 6

 

 

  

 

    
 − − − +        

= − −  
    − + +         

pq

pq

S R R x t

u x t

R x t S

 

Figure 3. The kink wave solution of 7 ( , )u x t  in 3D, 2D and contour 

4.2 Graphical representation of the (2+1)-dimensional GBS equation 
 Next, we represent the shape of the solution to the (2+1)-dimensional GBS equation  by 
setting some parameters 0 10a =  and 2.5 =  in the interval 0 , 100x t   for 0,y =  as 
displayed in Figure 4. The graphs of  7 ( , , )v x y t  by setting 0 10, 0.5, 2= = =a R  and 4=S  in 

the interval 0 , 100x t   for 0,y =  shown in Figure 5, produce a kink wave solution. 
 
 
 
 
 

 

( ) ( )2 0

3
, , coth ,

4 2


 

 
= + + − 

 
pqv x y t a x y t  

Figure 4. The kink wave solution of 2 ( , , )v x y t  in 3D, 2D and contour 
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( )
( )( )

( )( )

2 2

7 0

sinh3
, , ,

4 cosh

 

 

 − + + −
 = +
 + − +
 

pq

pq

S R R x y t
v x y t a

R x y t S
 

Figure 5. The kink wave solution of 7 ( , , )v x y t  in 3D, 2D and contour 
 

Solution 12 ( , , )v x y t  with 0 10a =  and 3 =−  in the interval 0 , 100x t   for 0=y  
corresponds to Figure 6, and solution 14 ( , , )v x y t  with 0 10, 3, 4= = − =a R  and 2=S  in the 

interval 0 , 100x t   for 0=y  corresponds to Figure 7. All of them produce a periodic traveling 
wave solution. 
 
 
 
 
 
 
 

( ) ( ) ( )12 0

3
, , tan cot ,

8 4 4

  
 

 −  −   − 
= − + − − + −    

    
pq pqv x y t a x y t x y t  

 

Figure 6. The kink wave solution of 12 ( , , )v x y t  in 3D, 2D and contour 
 
 
 
 
 
 
 

( )
( )( )

( )( )

2 2

14 0

sin3
, , ,

4 cos

 

 

  − − − + −−
 = +
 − + − +
 

pq

pq

R S R x y t
v x y t a

R x y t S
 

Figure 7. The kink wave solution of 14 ( , , )v x y t  in 3D, 2D and contour 
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5. CONCLUSION 
 In this work, we have examined the combined kdv-mkdv equation and the (2+1)- 
dimensional generalized breaking soliton equation by means of the efficient technique known as 
the Riccati sub-equation method. The solutions are found in trigonometric and hyperbolic forms. 
 The Riccati sub-equation method is powerful and gives the exact traveling wave solutions 
to the combined kdv-mkdv equation and the (2+1)-dimensional generalized breaking soliton 
equation. And the Riccati sub-equation method can be used for many other nonlinear partial 
differential equations to get feasible solutions to tangible incidents. 
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