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ABSTRACT

The main goal of this study is to find exact traveling wave solutions of the combined kdv-
mkdv equation and the (2+1)-dimensional generalized breaking soliton equation using the Riccati
sub-equation method. The solutions are shown by hyperbolic and trigonometric functions, which
can be transformed into kink waves and periodic waves. Their graphical representations are two-
dimensional, three-dimensional graphs, and contour graphs are shown using suitable parameter
values. Additionally, the results proved that the method employed in this study is a powerful
analytical tool for obtaining exact traveling wave solutions to nonlinear models that are used in

many different engineering and scientific disciplines.

Keywords: Riccati sub-equation method; partial differential equation; combined kdv-mkdv

equation; (2+1)-dimensional generalized breaking soliton equation



47 | MnsansImerenansuazmalulad ams.gassagil Print ISSN: 2586-8101 Online ISSN: 2697-6447

Uil 8 atfufl 2 (waunAw 2567 - AsnAw 2567)

1. INTRODUCTION

Nonlinear partial differential equations have become a useful tool for describing the
natural phenomena of science and engineering such as optical fiber communications, atmospheric
pollutant dispersion, solid-state physics, signal processing, mechanical engineering, electric control
theory, relativity, chemical reactions, etc. Recently, researchers have found many powerful
methods to get exact solutions to nonlinear partial differential equations, such as the simple
equation method [1], the modified simple equation method [2], the Kudryashov method [3], the
(G/G)-expansion method [4], the sine-Gordon expansion method [5], the Riccati sub-equation
method [6], the Riccati-Bernoulli sub-ODE method [7], the Laplace optimized decomposition
method [8], the new extended direct algebraic method [9], etc.

In the present work, we take into consideration the combined kdv-mkdv equation [10],
u, +0auu + Py +u_ =0, (1.1)

where u=u(x,t), & and ,B are real constants. Many analytical techniques have been used to

study this equation. From numerous authors, such as in 2010 using the Jacobi elliptic functions
expansion method [11], in 2012 using the improved (G/G)-expansion method [12], in 2014 using
the complex method [13], in 2016 using the consistent tanh expansion (CTE) method [14], and in
2023 using the Bernoulli sub-ODE method [10]. And we investigate the (2+1)-dimensional
generalized breaking soliton (GBS) equation [15],

u, +4uxxuy + 4uxuXy +uXxxy =0, (1.2)

where u= u(x,y,t) In many papers, the (2+1)-dimensional GBS equation (1.2) was investigated
with various techniques, such as in 2010 using the generalized Jacobi elliptic function method [15],
in 2013 using the new generalized (G'/G)-expansion method [16], in 2015 using the modified simple
equation method [17], in 2018 using the Bell’s polynomials method [18].

In this work, we use the traveling wave to transform the combined kdv-mkdv
equation and the (2+1)-dimensional generalized breaking soliton (GBS) equation into nonlinear
ordinary differential equations. Then, using the Riccati sub-equation method, we have displayed

the analytical solutions, and the wave effects are shown in 2D, 3D, and contour graphs.
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2. DESCRIPTION OF THE RICCATI SUB-EQUATION METHOD
This section presents the Riccati sub-equation method, a simple technique for finding
traveling wave solutions to nonlinear partial differential equations. Assume that the nonlinear

partial differential equation with two independent variables x and t is represented by:

P(u,u,u,u.,u ,u..)=0, (2.1)

7 Txx? Txt T

where u= u(x,t) is an unknown function and P is a polynomial in u(x,t)and its various partial
derivatives, in which highest-order derivatives and nonlinear terms are involved. The following five

processes can be used in the Riccati sub-equation method [19,20].

First, transformation process.

Denoting the traveling wave solution of PDE (2.1) as:
u(x,t)=u(§),§=x—a)t, (2.2)

where @ is the speed of the traveling wave. We are capable of transforming Eq. (2.1) into an
ordinary differential equation (ODE) for u = u(é‘) using the traveling wave transformation Eq. (2.2).

This enables us to use the following changes:

then Eq. (2.1) reduces to a nonlinear ordinary differential equation ODE:

Glu,u'u",.) =0, (2.3)

where G is a polynomial of u(f) and its derivatives, where the prime represents the derivative

with respect to ‘f

Second, solution-assuming process.

Assume the solution of Equation (2.3) in finite series,

u(5>=§a¢i(§>, )

when a are constants and a, is non-zero, while (0(5) satisfies the following the Riccati

equation:
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Third, general solutions of the Riccati sub equation method.

The Riccati equation method [19,20] is used to find @, as shown below:

@' (&)=c+9°($), (2.5)

Where O is an arbitrary constant. Here, prime denotes the derivation with respect to 5 By
using the general solutions of Eq. (2.5), we obtain the following expression:

Case I: When 0 <0,

0,(&)=—v=0 tann (V=0¢), (26)
@,(§)=—=0 coth, (ch), (27
0, (&) =—=0 tanh, (zﬁg)i/ 0 sech, (2/=0¢E),
?.(§)=~V=0 cotn,, (2=0¢ ) =0 s, (2=0¢), (2.9)

¢E(§)=—%(Etanhpq (§§]+Ecothm [?f}j (2.10)
o (g):1[—(R2+52)O'—R\/$coshpq(2\/$§)’ (2.11)
‘ Rsinhpq(zﬁ§)+5

B [=(s*—R")o —RJ—0 sinh, (2\/25)
(07(5)__ Rcoshpq (2\/;@3)-{-5 ’ 2

(2.8)

where R,S are two non-zero real constants and satisfy s*—R">0.

Case ll: When O >0,

(2.13)

0.(&) =T n, (Vo¢).
%(5):_6@%(*/55)’ (2.14)
9, (&)=—otan,, (zﬁg)i\/gsecw (2\/5)’ (2.15)
0,(§)=—o ot (2VoE) o cxc, (20E). 016

¢12(§)_—(\/_tan (géJ_\/ECOtW (gé‘:j} (2.17)

B «/(R —S )O‘ R\/_cos (Zx/gcf)
(P13(§) R5|npq(2\/_§)+5 ’ e
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0 (g)z_iﬂf(/?z—SZ)O'—R\/Esinpq(Zx/gf) 019
“ Rcoqu(2£§)+5 ’

where R,S are two non-zero real constants and satisfy R —s*>0.

Case lll: When O =0

¢15 (6) = _; g = const (2.20)

S+e
The different types of generalized hyperbolic functions are defined as follows

[19,20], with p and q arbitrary constants, p > 0,9 >0,

2] —
e’ —qe
snh_(9)=22— (2.21)
Pa 2
% -0
e +ge
cosh (9) _pe 79 , (2.22)
Pq >
pe’ —qge”
tanh (0)=———. (2.23)
pe +ge
[ -0
e +ge
coth (0)= LA ~ P =, (2.24)
pe —qe
2
sech | (9) =—D (2.25)
pe +ge
2
csch . ((9) =— — (2.26)
pe —ge

where @ is an independent variable.
The different types of generalized triangular functions are defined as follows

[19,20], with p and g arbitrary constants, p > 0,q >0,

i6 —i0
e —qge
¢in (9) _ p q ’ (2.27)
Pq .
2i
0 —i0
e +ge
s (0)=2— (2.28)
pq
2
pe/'g _ qe—/’9
tan ((9) =—j—, (2.29)
Pq i0 —i0
pe *+ge
i@ —i0
_ pe tge
COtpq (8) — ﬁ’ (230)

pe” —ge
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2
Secpd (9) = 0 -6’ (2.31)
pe +ge
2i
CsC,, (9) =% o (2.32)
pe —aqge

where @ is an independent variable.

Fourth, the N exploration process.
The positive integer N can be determined by balancing the highest-order derivative and the

highest nonlinear terms in Eq. (2.3).

Fifth, the solution-seeking process.
Substituting Egs. (2.4) and (2.5) into Eq. (2.3), the coefficients of all terms of the same order
gD" (i = 0,1,2,3,...) are gathered, and the coefficients are set to zero. We get an overdetermined

system of algebraic equations with respect to a, (i = 0,1,2,...,N). When all the parameters in Eq.

(2.4) are substituted, the solutions to Eq. (2.1) for the traveling wave are reached.

3. DESCRIPTIONS OF THE RICCATI SUB-EQUATION METHOD
Next, we wish to apply the preceding Ricciti sub-equation method to solve both the

combined kdv-mkdv equation and the (2+1)-dimensional GBS equation:

3.1 Results of the combined kdv-mkdv equation the combined kdv-mkdv equation

The combined kdv-mkdv equation is
u, +auu + ﬂuzuX +u, =0, (3.1.1)

where & and ﬂ are real constants. We will reduce it to an ODE using the traveling wave variable

g = X — @t. The substitution of the transformation into Eq. (3.1.1) leads to:
—ou + aud + il +4" =0 (3.1.2)

Integration Eq. (3.1.2) with the zero constant, we get:

2 3
ol u
—u+—+ pe +u"=0. (3.1.3)
2 3

Next, we utilized the balance approach of the highest-order derivative term and the highest

nonlinear terms of Eq. (3.1.3). then were N equals 1. We have the solution to Eq. (3.1.3) as follows:
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u(&)=a, +2,0. (3.1.4)

where @ satisfies Eq. (2.5). Therefore, the expressions for u”,u2 and u’ are expressed as:

u’ =203, + 2a1(03,
2 2 2 2
u =a,t2aa@+aQ, (3.1.5)

u ZaZ + 3a§a1(0 + 3a0af(02 + af(DZ.

Substituting Egs. (3.1.4) and (3.1.5) into Eq. (3.1.3) and collecting the coefficients of @' where

i=0,1,2,3, yields

2 3
Oa a
@, —wa,+ O+&=o,
2 3
1

Q; —a +aaga, +,Ba§a1 +20a, =0,

o (3.1.6)

a

o' Loy pasi=o
2

P,
3 a1

Q; ; +2a1=O.

Solving these equations, we get

a 6 a’ -a’
@ =——7>, =% |-—, O=—F7, O=—1+ (3.1.7)
28 B 248 63 h

The following are the exact traveling wave solutions to the combined kdv-mkdv equation:

Case I: when 0 <0,

a

u1(x,t)=£ —1Etanh , (3.1.8)
o

u,(x,t)=— —1tcoth , (3.1.9)
2f

2 2
(24 a a
u3(x,t)=— —1itanhpq 2,|— (X‘l‘—f

2f 243

2 2
(04 (04
iisechpq 2 ——(x—f-—tj . (3.1.10)

2 2 2 2

(94 (04 (04 (94 (94

u (x,t)=— —1*coth |2 [— x+—t||xcsch |2 [— X +—t , (3.1.11)
q Pq Pq

28 243 p
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a 1 1 a 1 a’
u5(x,t)=— —-1E- tanh | x+—tj ,
23 2 B g4 (3.1.12)
o (3.1.13)
U6 (X,t) - ’
23
(04
u,(x,t)=— , (3.1.14)
23
where R,S are two non-zero real constants and satisfy s°—R* >0.
Case ll: When O >0,
2 2
o (04
u(xt)=—| —1fitan_| [—| x+—t |||, (3.1.15)
2 243 6f
(04
u,(x,t)=— —1%jcot ( J\JJ (3.1.16)
2
a a’
u, (xt)=—| —14i| tan_| 2 (3.1.17)
23 243
a a’ a’ a’ a’
u“(x,t)=— —1%i cot, | 2, | —| x+—t icscpq 2 X +—t , (3.1.18)
23 243 6f 2af3 6f -
a 1 1o a’ 1|’ o’
uiz(x,t)z— —1t—i tan | — x+—t||=cot, | =, | ——| xt—t , (3.1.19)
2p 2 2\ 2af 6f 2\ 2af3 6f
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a
u,(x,t)=—| —1%i 2 : (3.1.20)
23 a a

(04
u, (xt)=— , (3.1.21)
23
where R,S are two non-zero real constants and satisfy R —<* >o0.
3.1 Results of the (2+1)-dimensional GBS equation
The (2+1)-dimensional GBS equation is
v, + ﬂfvxxvy + 4VXV><y + Viy = 0. (3.2.1)

We will reduce it to an ODE using the traveling wave variable é: = x+y— @t. The substitution
of the transformation into Eq. (3.2.1) leads to:

—C()V”+ 8V’V”+V(4) =0 (3.2.2)

Integration Eq. (3.2.2) with the zero constant, we get:
—ov +a(V) +V" =0, (323)

Next, we utilized the balance approach of the highest-order derivative term and the highest

nonlinear terms of Eq. (3.2.3). then were N equals 1. We have the solution to Eq. (3.2.3) as follows:
u(f)zao +a @, (3.2.4)
2
where @ satisfies Eq. (2.5). Therefore, the expressions for v’,(v’) and v" are expressed as:
v/ =0a, + algoz,
12 2.2 2 2 2 4
(V ) =0 a, +2C731(D +81¢ ) (3.2.5)

V" =2(72a1 + 8Ga1¢)2 + 6a1§04,
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Substituting Eq. (3.2.5) into Eq. (3.2.2) and collecting the coefficients of goi where | =0,2,4
yields

¢O; 202a1 +462af —@W0a, =0,

(02; 80a, + 8(7af —a, =0, (3.2.6)

a

Q; 6a1+4a12=O.

Solving these equations, we get

3 w
a=—— and O=—— (3.2.7)

The following are the exact traveling wave solutions to the

Case I: when 0 <0,
NI

3
v, (X,y,t) =a, +—\/a)tanhpq —(x +y —a)t) , (3.2.8)
q 2

Jo

(x+y—at) |, (3.2.9)

3
v, (x,y,t) =aq, +—\/a)cothpq
il

2

(tanh \/E(X+y—a)z‘))iisechpq (\/5(x+y—a)t))), (3.2.10)

\/B(x,y,t)zao +

v, (o) =a,+

(coth J_(x+y wf))+csch (\/5(X+y—a’f)))v (3.2.11)

v, (x,y.t)=aq, +—(tanh —(x+y wf)}rcoth (%(XH—M)DJ (3.2.12)

3 a) NR +5° —Rcosh (\/5(X+y—a)t))
v,(xyt)=a, - , (3.2.13)
a4 Rsinhpq (ﬁ(x+y—a)t))+5
sw | NS =R +Rsinh_ (\/5(x+y—a)t))
\/7(x,y,t)=ao + (3.2.14)
Rcoshpq(\/a(x-l-y—a)t))-ks
where R,S are two non-zero real constants and satisfy s*—R*>0.
Case ll: When O >0,
3 — w
V8 (X’y’t) = C’O _Z —@ tanpq (X +y - a)t) ’ (3215)



56 | MsasIneemansuazimalulad uns.qa5saugil Print ISSN: 2586-8101 Online ISSN: 2697-6447

Uil 8 atfufl 2 (waunAw 2567 - AsnAw 2567)

[

(x+y—ax) |, (3.2.16)

3
v, (X,y,t) =a, + -0 Cotpq
q

3~

VlO (X’y’t.):ao -

(tanpq (x/%(x-l—y—a)t))isecpq (\/%(X-I-y—(t)t))), (3.2.17)
-

v, (X,y,t) =a,+

(cotpq(\/%(x+y—a)t))icscpq(\/$(x+y—a)f))), (3.2.18)

Vlz(x,y,t)zoo—%/_w (tanpq N—® (X+y—a)t)J—cotpq( N~ @ (X+y—a)t)jj, (3.2.19)
q 4
( t) 3 —@ i\/Rz - —Rcoqu (\/—a)(x +y—60f)) (3.2.20)
v.(x,y,t)=a — ) 2.
” g ’ a /'?sinpq (\/—a)(x+y—a)t))+5
TS P ] e I =5 e, (V-0 Gty —an)) , (3.2.21)
“ ’ 4 Rcos, (\/—a)(x-i-y—a)t))-i-B

where R,S are two non-zero real constants and satisfy R°—s’>o0.

4. GRAPHICAL REPRESENTATION OF SOME OBTAINED SOLUTION
In this section, we have presented some physical graphs of some solutions to the combined

kdv-mkdv equation and the GBS equation.

4.1 Graphical representation of the combined kdv- mkdv equation
We set some parameters to get the example graph of the wave effects of the combined kdv-
mkdv equation by & = 2,,3 = —2 intheinterval 0 < x,t <100, which displayed in Figures 1 and

2, it produces a kink wave solution.

1 e — e — - —

60 80 100 o 20 a0 50 80 100

ul(x,t):i{—l+tanh [ - o [x-i—az thJ,
2f3 . 24 f3 6f3

Figure 1. The kink wave solution of u1(x,t) in 3D, 2D and contour
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100

50 B e e B0
— 20 40
()

ua(x,t)zi(—licoth {2 - o [x+aZ f}}—csch {2 - o (x+a2 tj}}
2f3 . 243 63 . 24 f3 63

Figure 2. The kink wave solution of u,(x,t) in 3D, 2D and contour

The graphs of u,(x,t) by o = 2, =—2,R=1,5=2 inthe interval 0<x,t <100, as

shown in Figures 3, are the shapes of kink waves that rise or descend from one asymptotic state
to another.

20 40 60 80 100
X

- - az 0.’2
/ST —R" —Rsinh 2 [— x+—t
a ” Zy 6
u, (x,t) =— —-1—-

2 a’ o’
Rcoshpq 2 |— X+—t||+S
24 6f3

Figure 3. The kink wave solution of u,(x,t) in 3D, 2D and contour

4.2 Graphical representation of the (2+1)-dimensional GBS equation

Next, we represent the shape of the solution to the (2+1)-dimensional GBS equation by
setting some parameters a, =10 and @W =25 in the interval 0 <x,t<100 for y =0, as
displayed in Figure 4. The graphs of v, (x,y,t) by setting a, =10, =0.5,R=2 and S=4 in

the interval 0 < x,t <100 for y =0, shown in Figure 5, produce a kink wave solution.

; 100 100 %

80 100

v, (x,y,t) =a, +i«/5cothpq (@(x +y —a)t)J
a4 2

Figure 4. The kink wave solution of v,(x, y,t) in 3D, 2D and contour
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(1)
&, B B
3 2 %
R T G i o' ]

60 80 100

s@| VS =R +Rsinh (\/5(x+y—a)t))
reosh (Vo (x+y—ar))+s

v, (x,y,t) =a, +

Figure 5. The kink wave solution of v, (x, y,t) in 3D, 2D and contour

Solution v,,(x,y,t) with a, =10 and @ =—3 in the interval 0 < x,t <100 for y =0
corresponds to Figure 6, and solution vm(x,y,t) with a, =10, =—3,R=4 and S=2 in the

interval 0 < x,t <100 for y =0 corresponds to Figure 7. All of them produce a periodic traveling

wave solution.

q
100 . ]

12068

> -100

200 L.
00

o (@ Nars

n (x+y—60t) —cot,,
8

ViZ(X’y’t)zao -

(x—l—y—a)t) ,

Pq

Figure 6. The kink wave solution of vlz(x,y,t) in 3D, 2D and contour

Vi (X,y,t) =ag, +

a Rcoqu(\/%(x+y—a)t))+5 ,

Figure 7. The kink wave solution of vla(x,y,t) in 3D, 2D and contour



59 | MsasInermansuazimalulad uns.qa55augil Print ISSN: 2586-8101 Online ISSN: 2697-6447

Uil 8 atfufl 2 (waunAw 2567 - AsnAw 2567)

5. CONCLUSION
In this work, we have examined the combined kdv-mkdv equation and the (2+1)-
dimensional generalized breaking soliton equation by means of the efficient technique known as
the Riccati sub-equation method. The solutions are found in trigonometric and hyperbolic forms.
The Riccati sub-equation method is powerful and gives the exact traveling wave solutions
to the combined kdv-mkdv equation and the (2+1)-dimensional generalized breaking soliton
equation. And the Riccati sub-equation method can be used for many other nonlinear partial

differential equations to get feasible solutions to tangible incidents.
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