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Potential of Phytolith Accumulation in Thai Rice Cultivars

a o =l 1 o a1 ad ¢ 2 aa aAa a & 1%
Az 1maede13ss, | avalg inzsas, ' 8% wowilszes ? uas Asws asnglydizd
Siratchaya Luangcharuthorn, ' Sahanat Petchsri, " Wasinee Pongprayoon >

and Siriporn Sripinyowanich ”
Received 3 June 2024, Revised 18 August 2024, Accepted 20 August 2024

ABSTRACT

Phytoliths are non-crystalline amorphous silica and are considered non-labile carbon, offering
long-term carbon sequestration. This study aimed to evaluate phytolith accumulation in the leaf and root
tissues of various Thai rice cultivars and analyze the relationship with the expression levels of two groups
of silicon transport genes: silicon influx transporter genes (OsLsi1 and OsLsi6) and silicon efflux
transporter genes (OsLsi2 and OsLsi3). It demonstrated that phytolith accumulation in root tissues was
significantly higher than in leaf blades and sheaths (p<0.05). The highest phytolith accumulation was
observed in RD51 and RD43, with values of 146.10 and 120.03 mg/gDW, respectively. The total phytolith
content of RD51 was 2.01 times greater than that of KDML105. Additionally, a positive correlation was
detected between phytolith content and the expressions of OsLsi2 and OsLsi3 (r = 0.49%). OsLsi2 and
OsLsi3 enable silicon transfer between cells, allowing for silicon transport within the plant and its storage

in the form of phytoliths.
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Table 1 Forward and reverse primer sequence and melting temperatures.

Gene 5’-Sequence-3’ Tm(°C)
OsLsi1 F  GGATTCAGGTTCCGTTCTAC 60
R GGTGGTTCCGATCACATC 60
OsLsi2 F CCATCTGGGACTTCATGG 59
R CGTTGGTACGTTTGATGC 59
OsLsi3 F GGATGTTCGTGACGGTGAG 62
R CGGTGACGTGGTTGATCTT 62
OsLsi6 F CTCGAACGAGATCCATGACC 58
R GAGGAGGTTAGGAGGGAAGA 58
OsActin F  GGAGCGTGGTTACTCATTC 60
R CTCCATTTCCTGGTCATAGTC 60
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Figure 1

KDML105 Riceberry RD43 RD51

Phytolith content in leaf and root tissues of different five cultivars of Thai rice.

Means with the different letters in graph are significantly different to each other according to

DMRT (p<0.05).
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(p<0.05) AaLdusaindIn 2.87 uaz 2.02 i1 lu
41790943 uaz 1.57 Lasz 2.07 1vinludnanas1
A W& aU (Figure 2a) UazLioWa3mn
ANUFNABTIERIsUTu N ladnnunisg
UEAIDBNUBIHW OsLsi2 WAz OsLsi3 WUTINT=aU
ANTURAIDANVBIEU OsLsi2 WAz OsLsi3 i
anFNABSIEILInnuYSaIWladn aeaziAn
I¢tannen r YA 0.49 (Figure 3¢ Wa 3d) e35it
miﬁnmumaqﬁﬂunﬁju silicon efflux transporter
vasaalalularnain ledun OsLsi2 uaz OsLsi3
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Figure 2 The means + SE of relative gene expression levels (bar graphs) of OsLsi1, OsLsi2 and

OsLsi3 in root (@) and OsLsi6 in leave (b) in comparison to phytolith content (line graphs).

Means with the different letters in graph are significantly different to each other according to DMRT.
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(d) expressions in leave of five Thai rice cultivars. * indicates significant difference at p<0.05.
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