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Abstract

This research aims to develop a forecasting model for pharmaceutical product demand
at AAA Pharmacy in Nakhon Ratchasima Province by studying Machine Learning techniques.
The study examines ten quantitative forecasting methods 1).Moving Average 3 months (MA3)
2).Moving Average 12 months (MA12) 3).Single Exponential (SE) 4).Double Exponential (DE)
5).Winters’ Method Multiplicative (WMM) 6).Winters’” Method Additive (WMA) 7).Trend Analysis
(TA) 8).Time Series Decomposition Multiplicative (TSDM) 9).Time Series Decomposition Additive
(TSDA) 10). Long Short-Term Memory (LSTM). Additionally, the research utilizes MINITAB

software to reduce the issues of product shortages and excessive inventory. The study focuses
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on forecasting 29 hazardous product Stock Keeping Units (SKUs), categorized into 11 subgroups
eye drops, antibiotics, anthelmintics, contraceptives, anxiolytics, cough medicine, anti-
inflammatory drugs, cold medicine, antihistamines, pain relievers, and acid reflux medication.
The data covers a three-year period from January 2018 to December 2020 to determine the
most suitable forecasting method for each product category. The accuracy of the forecasts is

measured using Mean Absolute Deviation (MAD).

From the research findings, appropriate demand forecasting methods were determined
by categorizing products into four groups based on their characteristics. 1. The Moving Average
method, which provides the highest forecasting accuracy and lowest error rate, is suitable for
stable demand products such as pain relievers and anxiolytics. 2. The Trend Analysis method
is appropriate for trending demand products like contraceptives, as it effectively captures
growth patterns in the data. 3. Winters' Method Multiplicative, which offers the highest
accuracy in forecasting seasonal demand products that experience high demand during
specific seasons, including antibiotics, cough medicine, antihistamines, and cold medicine. 4.
The Long Short-Term Memory (LSTM) machine learning model efficiently manages highly
volatile data for irregular demand products with uncertain demand patterns, including eye
drops, anthelmintics, anti-inflamsnmatory drugs, and acid reflux medication. Pharmacies can
select forecasting methods appropriate for their product categories. Overall research findings
conclude that the LSTM method provides the best error reduction when implemented for
forecasting, enabling companies minimize costs and maximize inventory management

efficiency.
Keywords: Forecasting, Inventory, Long Short-Term Memory (LSTM), Machine Learning (ML)
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A19199 1 MFIATIERRILUSHNaRaUSINEUAIME Regression Analysis

P-Value
SKU R-Sq (%) | Adj R-Sq (%) W | T Durbin
GDP . Yoy | gaumgdl
WANIA AVetd] Watson
A0158 39.56 29.48 0.01 0.88 0.32 0.75 0.02 1.81
A0160 6.19 0.00 0.62 0.78 1.00 0.66 0.26 1.73
A0167 14.52 0.28 0.17 0.51 0.26 0.89 0.25 217
A0175 22.07 9.09 0.48 0.24 0.45 0.04 0.88 1.58
A0178 4.07 0.00 0.91 0.79 0.51 0.36 0.76 1.99
B0O71 20.04 6.71 0.74 0.63 0.27 0.09 0.24 2.30
B0086 43.79 34.42 0.12 0.21 0.27 0.00 0.1 2.08
C0142 32.34 21.07 0.37 0.36 0.21 0.81 0.00 1.71
Co173 17.92 4.24 0.12 0.65 0.25 0.41 0.43 1.63
C0185 23.64 10.92 0.06 0.53 0.13 0.48 0.20 1.60
C0196 13.08 0.00 0.77 0.18 0.32 0.51 0.30 2.31
D0104 46.12 37.13 0.08 0.03 0.37 0.00 0.74 1.87
D0160 18.41 4.81 0.80 0.53 0.43 0.93 0.03 2.32
D0167 52.29 44.34 0.00 0.08 0.04 0.01 0.24 1.55
D0174 17.84 4.15 0.1 0.1 0.39 0.81 0.24 2.24
D0179 31.11 19.63 0.05 0.12 0.86 0.05 0.19 2.31
D0189 9.42 0.00 0.40 0.18 0.43 0.53 0.86 2.06
E0055 58.11 51.13 0.96 0.99 0.00 0.05 0.55 1.47
F0083 8.99 0.00 0.22 0.72 0.89 0.21 0.65 1.78
F0096 42.05 32.39 0.13 0.30 0.00 0.50 0.17 1.31
G0066 19.92 6.58 0.12 0.54 0.04 0.40 0.15 2.29
G0074 25.63 13.24 0.62 0.49 0.41 0.13 0.01 1.55
G0090 16.68 2.79 0.20 0.23 0.43 0.26 0.39 1.23
G0091 23.35 10.57 0.01 0.41 0.95 0.16 0.87 257
G0095 28.07 16.08 0.01 0.65 0.42 0.98 0.88 2.1
H0038 18.84 5.32 0.06 0.49 0.35 0.62 0.52 2.42
10108 14.57 0.33 0.85 0.51 0.1 0.90 0.10 1.68
00045 32.56 21.32 0.01 0.93 0.15 0.65 0.14 2.44
S0125 32.68 21.46 0.02 0.35 0.56 0.98 0.14 2.32
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5.2 NaN133ATIEYUSULEUAT MAD Wenn3gn1snensalimanzauiigadnsuaunn

M15199 2 NSUSEUEUAT MAD AUAUAITIIVNA 29 SKUs way 11 Usenneae

SKU | MA3 | MA12 | SE DE | WMM | WMA TA TSDM | TSDA | LSTM | Best Usznen
A0167 | 1.63 136 | 1.65| 1.83 1.64 1.59 1.50 1.53 1.50 139 | MA12 guAUIn
Co173 | 3.38 453 | 398 | 4.10 4.81 5.16 3.93 3.94 3.93 358 | MA3 gAY
G0090 | 4.94 660 | 578 | 5.4 6.63 6.53 5.46 5.49 5.49 555 | MA3 guAUIn
10108 | 833 731 | 804 | 787 7.61 8.19 7.89 7.53 7.61 7.92 | MA12 guAln
B0086 | 2.67 296 | 270 | 3.02 3.48 3.00 2.87 2.75 2.74 391 | MA3 g1AANBLASEN
A0158 | 811 772 | 148 | 7.76 5.92 5.58 7.00 6.41 6.25 5.10 | LST™M gauilin
A0160 | 1.83 198 | 171 | 1.88 2.23 2.66 1.64 1.69 1.65 2.10 | TA gauilin
D0179 | 214 205 | 200 | 214 3.23 2.41 1.79 1.85 1.86 262 | TA gauiln
D0189 | 3.41 294 | 289 | 349 3.64 3.73 2.82 2.88 2.88 438 | TA gauilin
A0175 | 1.69 161 | 164 | 177 1.20 1.30 1.79 1.64 1.64 1.82 | WMM eUTauy
AO178 | 3.86 344 | 341 | 399 5.20 4.04 3.31 3.18 3.17 3.76 | TSDA 81U Tuz
D0104 | 6.14 559 | 571 | 641 4.65 4.87 6.11 6.06 6.08 6.13 | WMM eUTuy
F0083 | 2.82 255 | 244 | 290 2.00 2.22 2.31 2.30 2.02 381 | WMM eUTauy
F0096 | 3.01 309 | 361 | 335 4.55 4.59 3.81 381 3.82 534 | MA3 81U Tuz
G0066 | 3.16 342 | 293 | 3.16 2.87 3.18 3.17 3.08 2.98 3.49 | WMM eUTuy
E0055 | 10.68 | 21.05 | 975 | 9.72 7.26 9.81 | 1434 | 1420 | 14.29 9.81 | WMM guile
C0142 | 2026 | 19.07 | 1874 | 19.89 | 14.63 | 1819 | 17.65 | 17.65 | 1757 | 14.79 | WMM AU
C0185 | 392 351 | 390 | 4.56 2.85 3.20 3.61 2.98 3.90 7.13 | WMM YWAUH
D0160 | 17.11 | 16.10 | 15.04 | 17.70 | 14.60 | 1491 | 15.03 | 14.64 | 14.68 | 1526 | WMM guinin
DO167 | 3.79 357 | 316 | 3.38 3.01 3.31 3.36 3.52 3.43 2.53 | LSTM Y1LDANN
B0OO71 | 3.87 345 | 363 | 455 4.16 4.39 3.59 357 3.57 3.35 | LSTM YIEENYD
H0038 | 2.90 263 | 288 | 302 3.70 3.66 2.87 2.83 2.84 191 | LST™M gnEnenend
C0196 | 232 210 | 219 | 264 2.09 2.06 2.12 1.94 1.93 1.68 | LSTM YADNLEY
D0174 | 391 368 | 360 | 4.02 6.34 6.04 3.33 3.37 3.21 3.17 | LSTM YUADALEY
50125 | 2.15 169 | 196 | 212 1.78 2.01 1.83 1.82 1.76 1.23 | LSTM YUADALEY
G0074 | 847 877 | 792 | 830 7.00 7.63 7.40 7.36 7.37 6.63 | LSTM | suinsaluadou
G0091 | 1339 | 1350 | 1211 | 1335 | 1198 | 11.13 | 1145 | 1096 | 11.11 | 11.72 | TSDM | sunnsaluadeu
G0095 | 151 123 | 132 | 146 1.34 1.45 1.23 1.08 1.10 0.66 | LSTM | snunnsalvadou
00045 | 6.05 558 | 603 | 638 4.72 5.26 5.53 5.43 5.52 3.98 | LSTM | sudnsaluadou
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