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Abstract

This research investigation explores the comparative performance of probability
weighting classification techniques in the assessment of water quality. The dataset, sourced
from Kaggle, comprises 7,999 records detailing water quality, characterized by 21 dimensions of
chemical component quantities and another binary-class quality indicator. Through the
integration of ensemble methods and the utilization of pairwise comparison techniques, the
study demonstrates enhancements in precision, recall, and F-measure, achieving a minimum
increase of 6.68%, albeit with a maximum trade-off of 5.16% in accuracy, when compared to
single classifiers. These findings not only contribute to advancing single classification techniques
but also lay the groundwork for the development of more resilient and dependable models.
The implications of this research extend to practical applications in environmental monitoring
practices, influencing policy decisions, and guiding interventions aimed at safeguarding water
quality. By establishing a foundation for robust modeling, the study underscores its significance

in shaping proactive measures for sustaining and preserving the quality of water resources.
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1. Introduction

Water quality assessment is fundamental
to ensuring environmental sustainability and
public health [1]. As the demand for
automated and scalable water monitoring
systems grows, the integration of machine
learning (ML) models becomes increasingly
essential [2]. These models enable the

analysis  of complex, high-dimensional
datasets and uncover patterns that may
elude traditional analytical approaches [3].
However, challenges such as class imbalance
and the demand for high precision in
sensitive environmental contexts continue to
hinder the

classification methods [4-5].

effectiveness  of  traditional

This study addresses these challenges by
investigating the efficacy of probabilistic
weighting ensemble classification techniques.
Unlike single-model classifiers, ensemble
methods  integrate  multiple  learning
algorithms to enhance robustness, miticate
overall
paper
evaluates the use of probabilistic weighting

biases, and improve predictive

accuracy [6-7].  This specifically
strategies in ensemble learning for water
quality classification, with an emphasis on
model performance, precision, and practical
utility [8-9].

To this end, a comprehensive dataset is
employed, accompanied by advanced data
preprocessing and robust evaluation metrics
to assess model performance.  This
framework provides a solid foundation for
examining the methodology, experimental
results, and broader implications of adopting
ensemble-based techniques in

environmental monitoring systems [6, 10].

The rising severity of g¢lobal water
pollution stemming from sources such as
agricultural runoff, industrial discharge, and
urban waste underscores the urgency of
accurate and adaptive classification systems
1, 111

challenges is essential for the development

Tackling  these  multifaceted

of intelligcent, responsive water quality
monitoring infrastructures [5].
highlishted the

advantages of ML in this domain. For

Prior research has

instance, [6] demonstrated the power of
ensemble models like Random Forests in
capturing non-linear relationships in water
quality data. In a comprehensive review, [10]
discussed the application of supervised
learning techniques across environmental
datasets. Domingos [12] explored Bayesian
classifiers, showcasing their ability to handle
imbalanced datasets effectively—a common
issue in  water quality monitoring. The
foundational work of Vapnik [13] on
statistical learning theory continues to inform
many modern classification frameworks.
Feature engineering remains a critical
aspect of improving model performance. As
shown in [14], tailored preprocessing steps
enhance the

significantly accuracy of

predictive  models in  water  quality

applications. Likewise, [15] emphasized the

value of integrating domain knowledge with

ML algorithms to boost model
interpretability without sacrificing
performance.

Handling missing data is another

persistent challenge. Research by [16]
evaluated various imputation methods such

as mean substitution, k-nearest neighbors (k-
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NN), and iterative imputation, and iterative
imputations have been evaluated for their
impact on model outcomes.

Beyond feature engineering, recent
advancements in deep learning have also
shown promise in automating the feature
extraction process. Convolutional Neural
Networks (CNNs), for instance, have been
adapted for water quality time-series data,
offering insights into temporal patterns and

trends.

2. Methodology

2.1 Dataset Description

The dataset used in this study was
sourced from Kaggle and includes 7,999
records, each characterized by 21 chemical
parameters and a binary quality indicator.
Preprocessing steps included normalization
to standardize data ranges, handling missing
values using mean imputation, and applying
recursive feature elimination to select the
most relevant features [17]. Data visualization
techniques, such as heatmaps and box plots,
were employed to analyze the relationships
among variables and to examine data
distribution, as shown in Fig. 1 and Fig. 2. The
analysis revealed that some variables contain
values that fall outside the normal range
(outliers), which may affect the accuracy of
the model in subsequent stages.

Additional  data
performed by detecting and

preprocessing  was
removing
outliers using the Interquartile Range (IQR)
illustrated

step that enhances data

method, as in Fie. 3, is a
preprocessing
quality prior to advanced analysis or model
development [18].  Furthermore, Principal

Component Analysis (PCA) was applied to
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reduce data dimensionality and enhance

computational  efficiency  during  model
training [19].

Data augmentation techniques, such as
synthetic oversampling, were employed to
address class imbalance, ensuring that the
received

minority class adequate

representation during training.

Upper Triangle Correlation Matrix of 21 Water Quality Variables
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Fig. 1 Heatmap for Correlation Matrix of data
water quality

Boxplots of 20 Chemical Parameters with Outliers
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Fig. 2 Boxplots show the distribution of 20

chemical parameters including outliers.



Boxplots of Normalized Chemical Variables (Outiiers Removed)

Chemical Parameters

Fig. 3 Distribution of 20 normalized chemical
parameters after removing outliers using the
IOR method. Standardized values are shown
as Z-scores

Table 1 presents the descriptive statistics
of selected variables used in the water
quality analysis. The table includes the
mean, standard deviation, minimum, and
maximum values for each variable. This
information provides an overview of the data
distribution and serves as a foundation for
more advanced analyses in subsequent
stages. We selected variables based on their
Pearson  correlation  with  the target
variable is_safe. Specifically, we computed
the correlation matrix across all 21 variables
in Fig. 1, then chose the top five variables
most strongly related to is_safe to populate

Table 1.

Table 1 Statistics of some dataset

Mean | Std. Min Max
Parameter
Dev.

1. aluminium 0.67 1.27 0.00 5.05
2. cadmium 0.04 0.04 0.00 0.13
3. chloramine | 2.18 2.57 0.00 8.68
4. chromium 0.25 0.27 0.00 0.90
5. arsenic 0.16 0.25 0.00 1.05

2.2 Classification Techniques
We employed multiple classification
techniques, including Decision Trees, which
split data based on important features using
a tree structure, making the results easy to
interpret  [20]. Support Vector Machines
(SVMs) were used to find the optimal
decision boundary that maximizes the margin
between classes, especially effective for
high-dimensional and complex data [21].
Additionally, we implemented Probabilistic
Weighting which
multiple models through weighted majority

Ensembles, combine

voting where weights are dynamically
adjusted based on each model’s confidence
scores, enhancing classification performance
and result stability [22-23]. Hyperparameter
tuning was performed using a grid search
methodology to optimize model
performance. Cross-validation was applied to
ensure robustness, using a 5-fold validation
approach. All computations were performed
in R using the caret package.

The models were evaluated under
various scenarios, including imbalanced class
distributions and noise injections, to simulate
real-world challenges. Comparative analyses
were conducted to benchmark the
probabilistic ensemble against traditional
classifiers.

2.3 Performance Metrics

Performance  was  evaluated  using
precision, recall, F-measure, and accuracy.
These metrics provide a comprehensive view
of model effectiveness, balancing the trade-
offs between true positive rates and
reliability.  The Matthews

(MCC) was also

prediction

correlation  coefficient
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included to assess the balance between all

four confusion matrix categories.

3. Results and Conclusion

3.1 Comparative Performance

Table 2 and Fig. 4 present a comparison
of  performance  metrics for  three
models:  SVM,  Probabilistic
Ensemble, and Decision Tree, using four key

classification

measures:

Table 2 Performance Metrics Comparison

Model SVM | Probabilistic | Decision
Type Ensemble Tree
1. Precision
78.32 84.50 80.45
(%)
2. Recall
75.10 82.45 78.33
(%)
3. F-Measure
(%) 76.68 83.47 79.38
4. Accuracy
(%) 85.42 80.26 82.90
100 Comparison of Model Performance Metrics
Fig. 4  Performance  Evaluation  of

Classification  Models:  SVM,  Probabilistic

Ensemble, and Decision Tree

Precision: the proportion of positive
predictions that are correct. The Probabilistic
highest
precision at 84.50%, outperforming both SVM

Ensemble model achieves the

and Decision Tree.
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Recall: the proportion of actual positive
cases correctly identified by the model. The
Probabilistic Ensemble again leads with the
highest recall of 82.45%, indicating better
detection of positive instances.

F-Measure: the harmonic mean of
precision and recall, reflecting the balance
between them. The Probabilistic Ensemble
attains the highest F-Measure at 83.47%,
demonstrating the best overall performance.

Accuracy: the proportion of total correct
predictions. Although the SVM model shows
the highest 85.42%, the
Probabilistic outperforms in

precision, recall, and F-Measure, suggesting a

accuracy at

Ensemble

more balanced and effective classification
performance.

The probabilistic weighting ensemble
models demonstrated significant
improvements in precision (+6.68%) and
recall, translating to higher F-measure scores.
However, a maximum trade-off of 5.16% in
accuracy was observed, highlichting the need
for context-specific model selection.

The  Probabilistic

notably

Ensemble  model
improves Precision and Recall,
despite a slight decrease in Accuracy (~5%).
lts superior F1  score indicates a well-
balanced reduction in both false positives
Thus,

reducing false positives and false negatives is

and false negatives. significantly
deemed worthwhile, even at the cost of a

minor decline in overall accuracy [24-25].

The choice of a Probabilistic Ensemble

model goes beyond simply leveraging

algorithmic  platforms it directly tackles

practical concerns by significantly reducing



critical errors in water quality assessment

systems.

3.2 Conclusion

This study confirms that probabilistic
weighting ensemble techniques outperform
single models in water quality assessment,
particularly in terms of Precision and Recall.
These metrics offer a clearer view of model
performance in reducing classification errors,
especially in imbalanced datasets. While
Accuracy remains a standard evaluation
metric, it is increasingly recognized that
relying solely on it can be misleading in such
contexts. Therefore, current best practices
recommend prioritizing Precision and Recall,
reflect the

effectiveness in identifying true positive cases

as they better model's
and minimizing false classifications [26], [27].
These findings hold significant potential for
enhancing environmental monitoring
systems and informing public health and
environmental policy. Future work will aim
to multiclass

to expand the approach

classification problems and tackle
related computational challenges, leveraging
machine learning advances and domain
expertise to support the sustainable
management of water resources.

Future work will focus on addressing
computational challenges and extending the
methodology to multiclass classification
scenarios. By leveraging advancements in ML
and domain knowledge, we aim to
contribute further to the sustainability and

preservation of water resources.
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