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Abstract 
 

This research investigation explores the comparative performance of probability 
weighting classification techniques in the assessment of water quality. The dataset, sourced 
from Kaggle, comprises 7,999 records detailing water quality, characterized by 21 dimensions of 
chemical component quantities and another binary-class quality indicator. Through the 
integration of ensemble methods and the utilization of pairwise comparison techniques, the 
study demonstrates enhancements in precision, recall, and F-measure, achieving a minimum 
increase of 6.68%, albeit with a maximum trade-off of 5.16% in accuracy, when compared to 
single classifiers. These findings not only contribute to advancing single classification techniques 
but also lay the groundwork for the development of more resilient and dependable models. 
The implications of this research extend to practical applications in environmental monitoring 
practices, influencing policy decisions, and guiding interventions aimed at safeguarding water 
quality. By establishing a foundation for robust modeling, the study underscores its significance 
in shaping proactive measures for sustaining and preserving the quality of water resources. 

 
Keywords: Water Quality, Classification, Probabilistic Weighting Ensemble, Machine Learning, 
Model Performance 
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1. Introduction 
Water quality assessment is fundamental 

to ensuring environmental sustainability and 
public health [1]. As the demand for 
automated and scalable water monitoring 
systems grows, the integration of machine 
learning (ML) models becomes increasingly 
essential [2]. These models enable the 
analysis of complex, high-dimensional 
datasets and uncover patterns that may 
elude traditional analytical approaches [3]. 
However, challenges such as class imbalance 
and the demand for high precision in 
sensitive environmental contexts continue to 
hinder the effectiveness of traditional 
classification methods [4-5]. 

This study addresses these challenges by 
investigating the efficacy of probabilistic 
weighting ensemble classification techniques. 
Unlike single-model classifiers, ensemble 
methods integrate multiple learning 
algorithms to enhance robustness, mitigate 
biases, and improve overall predictive 
accuracy [6-7]. This paper specifically 
evaluates the use of probabilistic weighting 
strategies in ensemble learning for water 
quality classification, with an emphasis on 
model performance, precision, and practical 
utility [8-9]. 

To this end, a comprehensive dataset is 
employed, accompanied by advanced data 
preprocessing and robust evaluation metrics 
to assess model performance. This 
framework provides a solid foundation for 
examining the methodology, experimental 
results, and broader implications of adopting 
ensemble-based techniques in 
environmental monitoring systems [6, 10]. 

The rising severity of global water 
pollution stemming from sources such as 
agricultural runoff, industrial discharge, and 
urban waste underscores the urgency of 
accurate and adaptive classification systems 
[1, 11]. Tackling these multifaceted 
challenges is essential for the development 
of intelligent, responsive water quality 
monitoring infrastructures [5]. 

Prior research has highlighted the 
advantages of ML in this domain. For 
instance, [6] demonstrated the power of 
ensemble models like Random Forests in 
capturing non-linear relationships in water 
quality data. In a comprehensive review, [10] 
discussed the application of supervised 
learning techniques across environmental 
datasets. Domingos [12] explored Bayesian 
classifiers, showcasing their ability to handle 
imbalanced datasets effectively—a common 
issue in water quality monitoring. The 
foundational work of Vapnik [13] on 
statistical learning theory continues to inform 
many modern classification frameworks. 

Feature engineering remains a critical 
aspect of improving model performance. As 
shown in [14], tailored preprocessing steps 
significantly enhance the accuracy of 
predictive models in water quality 
applications. Likewise, [15] emphasized the 
value of integrating domain knowledge with 
ML algorithms to boost model 
interpretability without sacrificing 
performance. 

Handling missing data is another 
persistent challenge. Research by [16] 
evaluated various imputation methods such 
as mean substitution, k-nearest neighbors (k-

  

  

NN), and iterative imputation, and iterative 
imputations have been evaluated for their 
impact on model outcomes. 

Beyond feature engineering, recent 
advancements in deep learning have also 
shown promise in automating the feature 
extraction process. Convolutional Neural 
Networks (CNNs), for instance, have been 
adapted for water quality time-series data, 
offering insights into temporal patterns and 
trends. 

 

2. Methodology 
2.1 Dataset Description 
The dataset used in this study was 

sourced from Kaggle and includes 7,999 
records, each characterized by 21 chemical 
parameters and a binary quality indicator. 
Preprocessing steps included normalization 
to standardize data ranges, handling missing 
values using mean imputation, and applying 
recursive feature elimination to select the 
most relevant features [17]. Data visualization 
techniques, such as heatmaps and box plots, 
were employed to analyze the relationships 
among variables and to examine data 
distribution, as shown in Fig. 1 and Fig. 2. The 
analysis revealed that some variables contain 
values that fall outside the normal range 
(outliers), which may affect the accuracy of 
the model in subsequent stages. 

Additional data preprocessing was 
performed by detecting and removing 
outliers using the Interquartile Range (IQR) 
method, as illustrated in Fig. 3, is a 
preprocessing step that enhances data 
quality prior to advanced analysis or model 
development [18]. Furthermore, Principal 
Component Analysis (PCA) was applied to 

reduce data dimensionality and enhance 
computational efficiency during model 
training [19]. 

Data augmentation techniques, such as 
synthetic oversampling, were employed to 
address class imbalance, ensuring that the 
minority class received adequate 
representation during training. 

 

 
 

Fig. 1 Heatmap for Correlation Matrix of data 
water quality 
 

 
 

Fig. 2 Boxplots show the distribution of 20 
chemical parameters including outliers. 
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values using mean imputation, and applying 
recursive feature elimination to select the 
most relevant features [17]. Data visualization 
techniques, such as heatmaps and box plots, 
were employed to analyze the relationships 
among variables and to examine data 
distribution, as shown in Fig. 1 and Fig. 2. The 
analysis revealed that some variables contain 
values that fall outside the normal range 
(outliers), which may affect the accuracy of 
the model in subsequent stages. 

Additional data preprocessing was 
performed by detecting and removing 
outliers using the Interquartile Range (IQR) 
method, as illustrated in Fig. 3, is a 
preprocessing step that enhances data 
quality prior to advanced analysis or model 
development [18]. Furthermore, Principal 
Component Analysis (PCA) was applied to 

reduce data dimensionality and enhance 
computational efficiency during model 
training [19]. 

Data augmentation techniques, such as 
synthetic oversampling, were employed to 
address class imbalance, ensuring that the 
minority class received adequate 
representation during training. 

 

 
 

Fig. 1 Heatmap for Correlation Matrix of data 
water quality 
 

 
 

Fig. 2 Boxplots show the distribution of 20 
chemical parameters including outliers. 

 

วารสารวิศวกรรมศาสตร์และการวิจัยเชิงนวัตกรรม

คณะวิศวกรรมศาสตร์ มทร.อีสาน วิทยาเขตขอนแก่น

31



  

  

 
 

Fig. 3 Distribution of 20 normalized chemical 
parameters after removing outliers using the 
IQR method. Standardized values are shown 
as Z-scores 
 

Table 1 presents the descriptive statistics 
of selected variables used in the water 
quality analysis. The table includes the 
mean, standard deviation, minimum, and 
maximum values for each variable. This 
information provides an overview of the data 
distribution and serves as a foundation for 
more advanced analyses in subsequent 
stages. We selected variables based on their 
Pearson correlation with the target 
variable is_safe. Specifically, we computed 
the correlation matrix across all 21 variables 
in Fig. 1, then chose the top five variables 
most strongly related to is_safe to populate 
Table 1. 
 

Table 1 Statistics of some dataset  

Parameter Mean   Std. 
Dev. 

Min Max    

1. aluminium 0.67 1.27 0.00 5.05 
2. cadmium 0.04 0.04 0.00 0.13 
3. chloramine 2.18 2.57 0.00 8.68 
4. chromium 0.25 0.27 0.00 0.90 
5. arsenic 0.16 0.25 0.00 1.05 

. 
 

2.2 Classification Techniques  
We employed multiple classification 

techniques, including Decision Trees, which 
split data based on important features using 
a tree structure, making the results easy to 
interpret [20]. Support Vector Machines 
(SVMs) were used to find the optimal 
decision boundary that maximizes the margin 
between classes, especially effective for 
high-dimensional and complex data [21]. 
Additionally, we implemented Probabilistic 
Weighting Ensembles, which combine 
multiple models through weighted majority 
voting where weights are dynamically 
adjusted based on each model’s confidence 
scores, enhancing classification performance 
and result stability [22-23]. Hyperparameter 
tuning was performed using a grid search 
methodology to optimize model 
performance. Cross-validation was applied to 
ensure robustness, using a 5-fold validation 
approach. All computations were performed 
in R using the caret package. 

The models were evaluated under 
various scenarios, including imbalanced class 
distributions and noise injections, to simulate 
real-world challenges. Comparative analyses 
were conducted to benchmark the 
probabilistic ensemble against traditional 
classifiers. 

2.3 Performance Metrics 
Performance was evaluated using 

precision, recall, F-measure, and accuracy. 
These metrics provide a comprehensive view 
of model effectiveness, balancing the trade-
offs between true positive rates and 
prediction reliability. The Matthews 
correlation coefficient (MCC) was also 

  

  

included to assess the balance between all 
four confusion matrix categories. 

 

3. Results and Conclusion 
3.1 Comparative Performance 
Table 2 and Fig. 4 present a comparison 

of performance metrics for three 
classification models: SVM, Probabilistic 
Ensemble, and Decision Tree, using four key 
measures: 
 

Table 2 Performance Metrics Comparison 
Model 
Type 

SVM Probabilistic 
Ensemble   

Decision 
Tree            

1. Precision 
(%) 78.32 84.50 80.45 

2. Recall 
(%) 75.10 82.45 78.33 

3. F-Measure 
(%) 76.68 83.47 79.38 

4. Accuracy 
(%) 85.42 80.26 82.90 

 

 
Fig. 4 Performance Evaluation of 
Classification Models: SVM, Probabilistic 
Ensemble, and Decision Tree 

 

Precision: the proportion of positive 
predictions that are correct. The Probabilistic 
Ensemble model achieves the highest 
precision at 84.50%, outperforming both SVM 
and Decision Tree. 

Recall:  the proportion of actual positive 
cases correctly identified by the model. The 
Probabilistic Ensemble again leads with the 
highest recall of 82.45%, indicating better 
detection of positive instances. 

F-Measure: the harmonic mean of 
precision and recall, reflecting the balance 
between them. The Probabilistic Ensemble 
attains the highest F-Measure at 83.47%, 
demonstrating the best overall performance. 

Accuracy: the proportion of total correct 
predictions. Although the SVM model shows 
the highest accuracy at 85.42%, the 
Probabilistic Ensemble outperforms in 
precision, recall, and F-Measure, suggesting a 
more balanced and effective classification 
performance. 

The probabilistic weighting ensemble 
models demonstrated significant 
improvements in precision (+6.68%) and 
recall, translating to higher F-measure scores. 
However, a maximum trade-off of 5.16% in 
accuracy was observed, highlighting the need 
for context-specific model selection. 

The Probabilistic Ensemble model 
notably improves Precision and Recall, 
despite a slight decrease in Accuracy (~5%). 
Its superior F1 score indicates a well-
balanced reduction in both false positives 
and false negatives. Thus, significantly 
reducing false positives and false negatives is 
deemed worthwhile, even at the cost of a 
minor decline in overall accuracy [24-25]. 
 

The choice of a Probabilistic Ensemble 
model goes beyond simply leveraging 
algorithmic platforms it directly tackles 
practical concerns by significantly reducing 
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accuracy was observed, highlighting the need 
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critical errors in water quality assessment 
systems. 

 

3.2 Conclusion 
This study confirms that probabilistic 

weighting ensemble techniques outperform 
single models in water quality assessment, 
particularly in terms of Precision  and Recall. 
These metrics offer a clearer view of model 
performance in reducing classification errors, 
especially in imbalanced datasets. While 
Accuracy remains a standard evaluation 
metric, it is increasingly recognized that 
relying solely on it can be misleading in such 
contexts. Therefore, current best practices 
recommend prioritizing Precision and Recall, 
as they better reflect the model's 
effectiveness in identifying true positive cases 
and minimizing false classifications [26], [27]. 
These findings hold significant potential for 
enhancing environmental monitoring 
systems and informing public health and 
environmental policy. Future work will aim 
to expand the approach to multiclass 
classification problems and tackle 
related computational challenges, leveraging 
machine learning advances and domain 
expertise to support the sustainable 
management of water resources. 

Future work will focus on addressing 
computational challenges and extending the 
methodology to multiclass classification 
scenarios. By leveraging advancements in ML 
and domain knowledge, we aim to 
contribute further to the sustainability and 
preservation of water resources. 
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critical errors in water quality assessment 
systems. 

 

3.2 Conclusion 
This study confirms that probabilistic 

weighting ensemble techniques outperform 
single models in water quality assessment, 
particularly in terms of Precision  and Recall. 
These metrics offer a clearer view of model 
performance in reducing classification errors, 
especially in imbalanced datasets. While 
Accuracy remains a standard evaluation 
metric, it is increasingly recognized that 
relying solely on it can be misleading in such 
contexts. Therefore, current best practices 
recommend prioritizing Precision and Recall, 
as they better reflect the model's 
effectiveness in identifying true positive cases 
and minimizing false classifications [26], [27]. 
These findings hold significant potential for 
enhancing environmental monitoring 
systems and informing public health and 
environmental policy. Future work will aim 
to expand the approach to multiclass 
classification problems and tackle 
related computational challenges, leveraging 
machine learning advances and domain 
expertise to support the sustainable 
management of water resources. 

Future work will focus on addressing 
computational challenges and extending the 
methodology to multiclass classification 
scenarios. By leveraging advancements in ML 
and domain knowledge, we aim to 
contribute further to the sustainability and 
preservation of water resources. 
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