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Abstract

While valuable in handling uncertainty, fuzzy and soft sets may sometimes prove

inadequate for certain scenarios. By merging their respective strengths, leading to the advances

of hybrid structures. These hybrid structures offer a robust framework for tackling uncertain

problems effectively. In particular, they find application in studying hyperalgebraic structures,

such as hypersemigroups. Traditionally, researchers have utilized hyperideals to explore the

properties of hypersemigroups. However, our current study confirms this and provides a new

perspective on the intricate relationship between hyperideals and hybrid hyperideals. By

analyzing their level sets and characteristic functions, we clarify the connections between these

two concepts and present an understanding of this field.
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1. Introduction

Algebras serve as fundamental
mathematical structures that are
indispensable in addressing various problems
in mathematics. Typically, the product of
two elements of an algebra yields another
element (see [1]). However, there are
scenarios where traditional algebras fall short
in adequately describing certain issues, such
as the complications of blood type studies.
To tackle such challenges, mathematicians
have developed a specialized mathematical
framework called hyperalgebras, introduced

by Marty [2] in 1934. When combined with
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the property similar to adding numbers,
hyperalgebras form hypersemigroups, also
known as semihypergroups. Over the past
two decades, the study of hypersemigroups
has carnered significant attention within the
mathematical ~ community.  Central  to
understanding the algebraic properties of
hypersemigroups are the concepts of

hyperideals. Numerous researchers have
investigated various types of hyperideals in
hypersemigroups, ascribing their algebraic
properties and applications (see [3-7]).

The concepts of fuzzy sets and soft sets

serve as invaluable mathematical tools in
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solving real-world problems fraught with
[8-91).
efficacy is often constrained by their limited

uncertainty  (see However, their

interpretative  scope.  Recognizing  this,
researchers have explored the synergistic
potential of combining these two paradigms
to enhance problem-solving capabilities. In
2018, Jun et al. [10] introduced hybrid
structures, amalgamating fuzzy sets and soft
sets to broaden their applicability. Their
pioneering work extended to examining BCK-
/BCl-algebras, shedding light on novel insights
into these algebraic structures. Subsequently,
hybrid

structures to investigate many algebraic and

numerous scholars have used

hyperalgebraic structures, including

semigroups and ordered semigroups (see [11-

14]).
Hybrid

significant advancement in hypersemigroup

structures  appeared as a
theory in 2022, pioneered by Mekwian et al.
[15] with their work on hybrid bi-hyperideals.
Their contribution laid the foundation for
understanding the relationships between bi-
hyperideals and hybrid hyperideals in hyper-
semigroups. Building upon this in 2023, the
further
framework by introducing hybrid left and
illustrated  the

connections among hybrid left, right, and bi-

present authors expanded the

right hyperideals. They

hyperideals, revealing distinct classes within
these hybrid structures (see [16]).

In this paper, we extend the results
established by Mekwian et al. in [15] by
providing a generalized framework.
Specifically, we characterize hybrid left (right,
bi-) hyper-ideals through their level sets, thus
offering a comprehensive characterization.

Moreover, we demonstrate the inclusivity of
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the previous result. The paper is organized as
follows: Section 1 delves into the historical
context and the significance of hybrid
structures within algebraic systems. Section 2
offers  essential  preliminaries to  the
groundwork for our subsequent discussions.
Section 3 presents our primary contributions,
describing hybrid left (right, bi-) hyperideals
and their level sets.

2. Preliminaries

In this section, we recall some basic
definitions of our study. A mapping
o HX H— P*(H) on a nonempty set H is
said to be a hyperoperation on H, where
P*(H) is the set of all nonempty subsets of
H. A structure (H;e) is called a hyperalgebra
if o is a hyperoperation on H (see [2]). A
hyperoperation o on H gives rise to a binary
operation & P(H) X P(H) - P(H) on P(H)
defined by

(aob) ifA,B+0
aeAbeB
0] otherwise

ASB =

forany A,B € H where P(H) is the set of all
subsets of H, (see [17]) A hyperalgebra (H;o)
is said to be a hypersemigroup [18] if
As(Bs(C)=(AsB)s(C forall 4,B,C € H. We
usually denote a hypersemigroup (H;o) by
the boldface letter H of its underlying set.
Any product A8 B of any two subsets of H
will be denoted by AB, and for simplicity,
we denote{x}4 and A{x} by xA and Ax,
respectively.  Moreover, the n-product
As-++3 A is written as A™, where n is a
natural number.

let H be a
nonempty subset A of H is said to be a left
(right) hyperideal [19] of H if HA < A (AH <
A) and a bi-hyperideal [20] of H if AAC A

hypersemigroup. A
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and AHA € A. It is not difficult to see that
any left (right) hyperideal is a bi-hyperideal.
A mapping f:X - [0,1] from a non-
empty set X to a closed unit interval is
Let U and E

be nonempty sets. Asoft set f in E over U is

called a fuzzy set [9] in X.

a mapping f:E - P(U). Combining such
two concepts, we obtain the concept of
hybrid structures defined by the following
definition.
Definition 2.1 ([10]). Let E and U be non-
empty sets. A mapping f:E - P(U) x [0,1]
is called a hybrid structure in E over U.
Let f be a hybrid structure in E over
U. We can see that f can be considered
as a pair f = (f1, fo) of a soft set f; in E
over U and a fuzzy set f, in E. From now
on, we let U be an arbitrary nonempty set.
(T,t) e P(E)x[0,1] can be
recarded as a constant hybrid structure in
E over U defined by T(x) =T and t(x) =t
for all x € E. Let A be a subset of E. The
characteristic hybrid structure x4 in E over
U is defined by ys(x):=(U,0) if x€ A
and ys(x)=(0,1) if x¢A. For any
hybrid structures f and g in E over U, we let
f«g if and only if fi(x) € g.:(x) and
fo(x) = g,(x) forall x € E. If g>» f, we
mean f < g.

For any

The concept of hybrid structures can be
used to study the algebraic properties of
through  the

notions. Let H be a hypersemigroup and f a

hypersemigroups following
hybrid structure in H over U. Then, f is said
to be:

(1) a hybrid subhypersemigroup in H
it 100 N 1Y) € Nuexylfi(W)}

and o)V f2(y) = Vuexy{fz(u)} for all
X,y € H,;

over U
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(2) a hybrid left hyperideal in H over

Uif f1(¥) € Nuexytfi(} and f(y) =
Vuexy{f2(W)} for all x,y € H;

(3) a hybrid right hyperideal in H over
Uif f1(x) € Nuexytfi(w)} and fo(x) =
Vaery{f @)} for all x,y € H;

(4) a hybrid bi-hyperideal in H over U
if fis a hybrid subhypersemigroup such
that f1(x) N f1(2) € Nuexy{f1 (W)} and

f2 (x) sz(z) = Vuexyz{fz(u)} fOl’ au
x,y,Z€ H.

In [15], the
connection between bi-hyperideals and hybrid

authors illustrated a
bi-hyper-ideals in hypersemigroups using the
notion of characteristic hybrid structures.
Theorem 2.2. Let H be a hypersemigroup,
and A a nonempty subset of H. The following
statements are equivalent.

(1) Ais a bi-hyperideal of H.

(2) xais a hybrid bi-hyperideal in H
over U.

3. Main Results

In this section, we generalize Theorem 2.2
by means of level sets of hybrid structures.
Let H be a hypersemigroup, f a hybrid
structure in H over U, T € H, and t € [0,1].
of f by
lev(f; (T, t)) ={x€eH:f(x)>» (T, t)}

We  begin  our main

We define a (ever set

result by
characterizing hybrid left (right) hyperideals in
hypersemigroup using level sets.
Theorem 3.1. Let H be a hypersemigroup,
and f a hybrid structure in H over U.
Then, the following statements are
equivalent.

(1) fis a hybrid left (right) hyperideal in
H over U.

(2) the nonempty level set lev(f; (T, t))
is a left (right) hyperideal of H for any

0



®+TC<Handte[0,1).

Proof. We prove only the case of hybrid left
hyperideals. For another case can be proved
similarly.

(1)=(2). Let T be a nonempty subset of
H and te€[01). Let xeH and yEe€
lev(f; (T,t)). Then, fi(y) 2T and f,(y) <t
By  our assumption, we have fi(xy) 2
NuexyltiW3} 2 A 2T  and  folxy) <
Vuexrylfz(W} < f,(y) < t. This means that
flxy) > (T,t). That is, xy €lev(f;(T,t)).
Therefore, lev(f; (T,t)) is a left hyperideal of
H.

(2)=(1). Let x,y €H. If f(y) < (2,1),
then fi(y) =0 and f,(y)=1. This
implies that f1(¥) € Nuexy{fi(w)} and
f2(0) = Vyexylfo(W)}.
i) #0 and f,(y) < 1. It is clear that
y € lev(f; f(y)). By the left hyperideality of
lev(f; f(¥)), we have xy €lev(f;f(y)).
This  implies that fi,(v) 2 fi(y) and
L) < foy) for all vexy. That is,
Nuexy i) 2 f1(y)  and  Vyexy (W) <
f>(y). This shows that f is a hybrid left
hyperideal in H over U.

Suppose  that

Our last main result illustrates a
characterization of hybrid bi-hyperideals.
Theorem 3.2. Let H be a hypersemigroup,
and f a hybrid structure in H over U. Then,
the following statements are equivalent.
(1) fis a hybrid bi-hyperideal in H
over U.
(2) the nonempty level set
lev(f; (T, 1)) is a bi-hyperideal of H for any
®@+TC<Handte][0,1).
Proof. (1)=(2).
subset of H and t € [0,1). First we show that
lev(f;(T,t)) is a subhypersemigroup. Let
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Let T be a nonempty

Then,

Hence,

X,y € lev(f; (T, t)). fx) >» (T,¢)
andf (y) » (T, t). filxy) 2
Nuexy{iW} 2 iGN f1(¥) 2T NT =T and
[2(xy) < Vuexry (W} < L0V () <
tVvt=t. This means that lev(f; (T,t)) is a
subhypersemigroup. let y€eH and
x,z €lev(f;(T,t)). Then, fi(x)2T,fi(z) 2
T,.fbix)y<t, and fir(z)<t
presumption, we have T € fi(x) N fi(z) €
Nuexy{fA(W)} € fi1(xyz)and t=f(x)Vv
f2(2) = VuexyAf2(W)} = fo(xyz). This means
that  f(xyz) » (T, t). That s,
lev(f; (T,t)). Altogether, lev(f; (T,t)) is a bi-
hyperideal of H.

(2)=(1).

By our

xXyz €

Llet x,y,z€H. If (fl(x)n

fl(Z)' fZ(x) \ fZ(Z)) < (Q' 1): then fl(x) n
fiz) =0 ¢ nuexyz{fl(u)} and f2(x) Vv
f2(2) =1 = VyexyAf2(w)}. Now,  suppose

that i(x) N f1(z2) #0 and fLb(x)V f,(2) < 1.
Put T:=fi(x) N fi(2) and t = fo(x) V f>(2).
Then, it is not difficult to
x,z € lev(f; (T, t)). Since lev(f; (T, 1)) is a bi-
x,y,z € lev(f; (T, t)).
fiw) 2 fi(x) N f1(2) and
L) < fL(x0)V fo(z) for all vexyz This
NuexyzUf1(W} 2 f1(x) N f1(2)
and VuexyAf2(W} < f2(0) V f2(2).
IlLlustrating that f is a hybrid

subhypersemigroup in H over U can be

see that

hyperideal of H,
Therefore,

means  that

proved similarly. Hence, f is a hybrid bi-
hyperideal in H over U.

The above theorem can be reduced
recarding the characteristic hybrid structures as
follows.

Corollary 3.3. Let H be a hypersemigroup,
and A a nonempty subset of H. Then, the
following statements are equivalent.

(1) x4 is a hybrid left (right, bi-)
hyperideal in H over U.
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(2) Ais a left (right, bi-) hyperideal
of H.
Proof. Since lev(x,; (T, t)) = {x € H: x4(x) >
(T,t)} =A, where =T € H and t € [0,1),
we obtain the proof.

4. Conclusion

The current paper provides the
connections  between  left (right, bi-)
hyperideals and hybrid left (right, bi-)

hyperideals by level sets. These generalize
these connections given by the characteristic
functions.
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